
From Overview to Facets and Pivoting
for Interactive Exploration of

Semantic Web Data

Josep Maria Brunetti1, Roberto García1, Sören Auer2
1Universitat de Lleida

Jaume II, 69. 25001 Lleida, Spain
{josepmbrunetti, rgarcia}@diei.udl.cat

2AKSW, Computer Science
University of Leipzig, Germany
auer@informatik.uni-leipzig.de

ABSTRACT
The proliferation of Linked Open Data on the Web has increased the amount of data available for
analysis and reuse. However, casual users find it difficult to explore and use Semantic Web Data
due to the prevalence of specialised browsers that require complex queries to be formed and
intimate knowledge on the structure of datasets. We address this problem in the Rhizomer tool
by applying the data analysis mantra of overview, zoom and filter. These interaction patterns are
implemented using information architecture components users are already familiar with but that
are automatically generated from data and ontologies. This approach makes it possible to obtain
an overview of the dataset being explored using techniques, such as navigation menus, treemaps
or sitemaps, which are usually not available in text-based semantic web browsers. From there,
users can interactively explore the data using facets. Moreover, facets also feature a pivoting
operation, motivated during tests with lay users, that removes the main constraint of most faceted
browsers, i.e. the inability to combine filters for differently faceted views to build complex
queries.

Keywords: Semantic Web, Linked Data, Human-Computer Interaction, Usability, Interaction,
User Interface.

1. INTRODUCTION
The amount semantic data available in the Web is rapidly increasing, for instance as part of the
Linked Open Data cloud (Bizer, Heath & Berners-Lee, 2009). However, from the end-user
perspective, the situation continues to be that the available datasets are monolithic and opaque
files, which usually can just be explored using complex semantic queries or complex user
interfaces. The objective is now to make this data more usable so that non Semantic Web experts
can easily grasp what kind of entities are contained in a dataset, how they are interrelated, what
are the main properties and values, etc. This will increase the awareness of the semantic data
currently available on the Web and also facilitate the development of new and innovative
applications on top of this data.

The common approach to make a dataset more usable to a wider range of users is to use some
sort of Data Web publishing tool like Pubby1. Such tools usually provide at least an HTML
rendering for each resource in the dataset. Each HTML page lists all the properties for the
corresponding resource. Pages are interlinked based on the connections among resources and the
user can follow HTML links. However, this feature is only useful if the user has some a priori
knowledge about the dataset, especially the identifier for a resource of interest. There are very
limited ways to obtain an overview of all the kinds of resources in the dataset. Additional tools
like Semantic Web browsers can be used. However, as discussed in Section 2, most of them also
lack mechanisms that make the dataset structure comprehensible for lay users or help them
building complex queries without requiring advanced technical skills.

The proposal we make in this article is to draw from the experience accumulated in the
Information Architecture (IA) domain (Morville & Rosenfeld, 2006) as well as to reuse and
adapt existing IA components to provide browsing, exploration and visualisation guidance to
users. Such IA components are well known to Web users, as they are present in most web pages:
navigation bars, facets, sitemaps, breadcrumbs, etc. This approach is implemented in Rhizomer, a
tool for publishing Semantic Web datasets while facilitating user awareness of the published
content. It is also being evaluated with lay users as part of a User Centred Design development
process. Iterative evaluations have motivated and guided the introduction of new features, like
pivoting, and validated improvements in the context of a quality in use model (ISO/IEC-25010,
2011).

Evaluations with users show the usefulness of an approach based on interface components
that provide an overview of the explored dataset and faceted navigation, especially when dealing
with highly structured data like Semantic Web data. Moreover, due to its richness, it also shows
that it is fundamental to provide a pivoting operation. Facets are sufficient when the data model
is simple, comprising a main type of resources described with a set of attributes and relations that
are used to generate the facets. Similarly, facets are suited when the data is explored in a
fragmented way, without requiring the combination of constraints on facets for different types of
resources, i.e. different faceted views.

However, if full power to explore the data is required, for example, to express complex
queries such as “actors from Spain, which have acted in films directed by Woody Allen”, it is
necessary to be able to pivot from the actors’ faceted view to the films view. The proposed
approach and its implementation in Rhizomer, are among the few Semantic Web data
exploration tools offering this functionality. Moreover, as our evaluation shows, Rhizomer
provides the best user experience when compared to the two other main tools featuring pivoting.

The remainder of this paper is organised as follows. First, related work is presented in Section
2. Then, the proposed approach is detailed in Section 3 and the results of its evaluation with lay
users are discussed in Section 4. Finally, conclusions and future work are presented in Section 5.

2. RELATED WORK
Dadzie and Rowe (2011) present the most exhaustive and comprehensive survey to date of
existing approaches to visualising and exploring Semantic Web data, particularly Linked Data.
This survey is used to situate our contribution, implemented in a tool called Rhizomer and
available online2.

1 Pubby – A Linked Data Frontend for SPARQL Endpoints, http://www4.wiwiss.fu-berlin.de/pubby/
2 http://rhizomik.net/rhizomer/

First of all, Rhizomer can be classified mainly in the category of text-based visualisation
tools, though it also includes graphical representations for dataset overviews. However, it is
important to note that it is not intended as a Linked Data browser. It is geared towards publishing
a dataset and generating the user interface to improve user interaction for that specific dataset. It
is possible to follow links to external resources and browse their descriptions in a transparent
way. However, the whole user interface is not generated for the datasets containing those
descriptions. This can be pointed as one of the main drawbacks of Rhizomer, when compared to
other text-based visualisation tools. This shortcoming is mitigated by the fact that Rhizomer is
intended for dataset publishing and not for open Data Web browsing. Moreover, for multiple
datasets published using Rhizomer, it is possible to navigate across them leveraging its user
interface without this shortcoming. In any case, future work includes exploring to what extent it
is possible to generate Rhizomer user interfaces on the fly, as users wander from dataset to
dataset.

On the other hand, one of the main conclusions drawn from the Dadzie and Rowe survey is
that just one of the analysed text-based tools, PiggyBank (Huynh, Mazzocchi, & Karger, 2007),
is suited for lay users. However, PiggyBank does not provide an overview of the explored
dataset beyond a list of classes and provides only limited exploration based on facets without
pivoting. An evolution of PiggyBank is Parallax, which is analysed later and does feature
pivoting. If tools with visual representations are also considered, most of them are only partially
considered to be suitable for lay users.

Tools with visual representations fully targeting lay users are DBpedia Mobile (Becker &
Bizer, 2009) and IsaViz (Pietriga, 2006), the former is just suited for the exploration of spatial
resources and the later is based on graph representations, which are usually considered to be
inconvenient from the user experience point of view (schraefel & Karger, 2006). Consequently,
its end user suitability is one of the main features of Rhizomer since it is a tool that focuses on
lay users and also has been evaluated with lay users.

Another significant contribution is that none of the text-based tools analysed in the survey
provides a high level overview of the datasets being browsed. In this respect, Rhizomer provides,
as detailed in Section 3, text-based and graphical overviews of the dataset classes and topics
structure. When comparing Rhizomer with tools offering visual representation, just RelFinder
(Heim, Hellmann, Lehmann, Lohmann, & Stegemann, 2009) provides a data overview just for
the relations among a reduced set of resources.

Another contribution to be highlighted is that none of the analysed tools provides the pivoting
operation as defined by Sacco and Tzitzikas (2009, p. 83) “a way to restart a search from the
results of a first search”. This operation is particularly important in the context of interactive
semantic data exploration. Filtering just at the level of one class, using for instance facets, is not
sufficient for many uses. Users should be capable of building queries that mimic natural
language relative sentences like “photos of buildings in the town, where the ICFCA conference
took place in 2004”. In this case, the related classes are cities and conferences, the user must be
able to filter both and relate them through a pivoting operation.

There are some tools outside the Semantic Web that provide pivot-like operations. They have
been applied mainly in collaborative web sites (Millen, Feinberg & Kerr, 2006) (Zhou,
Oostendorp, Hess & Resnick, 2008). Their main limitation is that they are tailored to specific
application domains and data models. There are other tools that might seem to support this

operation, like Microsoft’s PivotViewer3. However, in this case, they use the term “pivot” to
refer to changing the view on a particular set of resources using their facets, for instance from
“show grouped by year” to “show grouped by country”.

Despite not being considered in Dadzie and Rowe survey, there are some tools that provide
pivot-like operations. One of the first tools to offer this functionality was Parallax4. It is tied to
Freebase but there is also a derived tool called Sparallax5 that can work on top of SPARQL
endpoints. However, the latter’s performance is very limited and does not allow the exploration
of really large-scale datasets. Moreover, it is not clear whether it is a tool suited for lay users.
The first implementation of the pivoting operation in Rhizomer mimicked at the Parallax user
interface and the user tests showed that the widget providing the pivot operation, a box with an
arrow and links to related entities, is usually unnoticed by users who focus on the facets. They do
not notice the pivoting box because it is on the opposite side of the screen. Those users that
notice it, interpret it as a way to restart the exploration from a different entity. Finally, though
Parallax and Sparallax provide pivoting, they do not provide an overview feature.

Another tool that provides pivoting but is based on a graphical representation is gFacet
(Heim, Ziegler, & Lohmann, 2008). It is possible to filter one class and then pivot to a related
class keeping those filters for the instances of the second class connected to the filtered instances
in the first class. However, the use of a graphical representation makes the user interface difficult
to manage, especially for lay users not aware of the underlying graph data model. This is due to
the fact, that boxes and links easily fill the screen and there is not a contextualisation that helps
users understand what they are asking through the user interface, i.e. the underlying query that
has been built through their interaction. Another shortcoming is that there is not an initial
overview that helps users understand the shape of the dataset they are interacting with and where
they can start from.

Explorator (Araújo, Schwabe, & Barbosa, 2009) is also a tool that provides functionality
similar to pivoting. However, this is even a more demanding tool with regard to the pre-requisite
of Semantic Web knowledge. For instance, the tool uses concepts at the user interface such as
RDF triples so the user can pose restrictions at the subject, predicate or object level. Moreover,
in addition to facets, it is also possible to combine the sets of resources resulting from pivoting
using set operations like union, intersection and difference. This makes it possible to build really
complex queries using Explorator. However, the price is that the tool becomes too complex for
lay users. Another shortcoming is that there is little feedback about the underlying dataset
structure, just a list of classes or properties in the dataset.

Finally, another tool that provides functionality similar to pivoting is tFacet (Brunk & Heim,
2011). It is based on what the authors call hierarchical facets6. However, these are really
subfacets, i.e. facets of the entities accessible through a facet are shown in a hierarchical way
under the “superfacet”. Unfortunately, this becomes impractical when traversing many different
classes as the tree of facets becomes difficult to manage. Consequently, this tool cannot be
considered as suitable for lay users in its current state. Moreover, the tFacet approach constrains
the kind of queries to be built more than pivoting. If the user starts from a class, the queries are

3 http://www.microsoft.com/silverlight/pivotviewer/
4 http://www.freebase.com/labs/parallax/
5 http://sparallax.deri.ie/
6 Hierarchical facets as recognised in the literature are facets where the hierarchy is in the values of the facet, c.f.
Flamenco (Hearst, 2006).

about retrieving resources of that class that satisfy the filters for direct properties or properties of
the classes related to it. It is not possible to switch to a different class and retrieve its instances as
query result.

3. APPROACH
Our starting point is the fundamental set of tasks for data analysis proposed by Shneiderman
(1996). In the following, we present each task associated with the chosen interaction pattern and
Information Architecture component (Morville & Rosenfeld, 2006) to implement the pattern:

● Overview: obtain a full picture of the data set at hand. At this stage we propose to apply
the Global Navigation interaction pattern7 or the Directory Navigation pattern8. In
Information Architecture terms, the former can be implemented using navigation menus
users are used to see at the top or on the left of web sites. The later sitemaps that can be
represented using text or graphically, for instance using TreeMaps (Shneiderman, 1992).

● Zoom & Filter: zoom in on items of interest and filter out uninteresting items. Here the
proposal is to employ some form of Faceted Navigation9. Once we have zoomed in by
selecting the kind of things we are interested in from the navigation bar, facets are the
Information Architecture components that help users to filter out those data items that are
not interesting to them.

● Details: after zooming and filtering the user arrives at concrete resources of interest. At
this point, the user can obtain details for those resources, which in the case of Semantic
Web data means to retrieve properties for the resources plus those properties pointing to
them. This is related to the Details on Demand10 interaction pattern and can be
implemented via a simple list of properties and values of the resource of interest or
through a specific visualisation tailored to the kind of resource at hand, e.g. a map for
geo-located resources.

Our proposal is to elaborate these interaction patterns in the context of semantic data. We
have chosen these patterns because they are simple and very common so users are very
comfortable using them. They are part of the “culture” about how information is presented in the
Web so they can be easily learned. However, though they look like the common ones, these ones
should be capable of giving access to the richer semantic data they are built on top of.

The aim is to make it possible that lay users, not just Semantic Web technologies experts, can
reach the Semantic Web. This does not necessarily mean that any user will directly use these
interfaces; usually it is about making it easier for application developers to discover and reuse
semantic data while developing innovative products that ultimately spread the benefits of
semantic data through the Web. For instance, using the Personas approach (Garrett, 2010), we can
illustrate the target audience as shown in Table 1.

Table 1. Personas illustrating the intended users

7 http://www.welie.com/patterns/showPattern.php?patternID=main-navigation
8 http://www.welie.com/patterns/showPattern.php?patternID=directory
9 http://www.welie.com/patterns/showPattern.php?patternID=faceted-navigation
10 http://www.welie.com/patterns/showPattern.php?patternID=details-on-demand

Christina Warren is a 23 years old journalist that has recently finished her studies and
is currently in charge of the Films section of an online journal. She likes to write about
curious facts like “who appears most in films where Woody Allen is both the director and
an actor”. However, these kinds of things are really difficult to find out using resources
like Wikipedia or IMDb. (Picture by flickr.com/photos/electricnerve)

Michael Harper is a 30 years old freelance developer that creates and commercialize
mobile applications using online application stores. He works mainly in solo projects and
without any financial support. He is currently developing a mobile application that
supports bird watching and as a way to reduce development costs to a minimum he is
trying to reuse as much as possible available data about bird species, habitats, etc.

We are currently testing all these interaction patterns in the semantic data-publishing tool

Rhizomer11. It features navigation menus and sitemaps that are automatically generated and
maintained from analysing the underlying thesaurus and ontologies as well as the structuring and
instantiation of the navigation bars. Navigation menus and treemaps are described in Section 3.1.
A similar approach is followed for generating facets for each kind of entity in the data set. Facets
are described in Section 3.2. Some facets, when they connect to other classes, also feature a
“pivot” operation, detailed in Section 3.3. This section also presents the “breadcrumbs” that are
generated to help contextualise the user. Fig. 1 shows all these information architecture
components as they appear in Rhizomer.

11 http://rhizomik.net/rhizomer/

Fig. 1. Screenshoot of Rhizomer, at the top there is the navigation menu and on the left the
generated facets, some of them featuring the pivot operation. Just above the details area there
are the “breadcrumbs”

3.1 Overview
Overview is the first user task when dealing with a dataset. The objective is that the user is
capable of getting an idea about the overall structure of the dataset. In the case of Semantic Web
and Linked Data dataset, this overview is usually helping to identify the main types of entities in
the dataset, the most instantiated classes, and how they are structured, as well as their
hierarchical structure. In addition to an overview from a class instantiation point of view, it is
also possible to build an overview of how data is classified into topics coming from a thesaurus.
In this case, we consider the “broader than” and “narrower than” relations among topics. To gain
this overview, our proposal is to employ the Global Navigation or the Directory Navigation
interaction pattern. The former is provided by navigation menus, detailed in Section 3.1.1., the
later through graphical representations like treemaps, described in Section 3.1.2.

3.1.1 Navigation Menus
Navigation menus, in the case of websites, let users navigate through different sections and pages
of the site. They tend to be the only consistent navigation element, being present on every page
of the site.

Traditionally, user-centred design techniques like Card Sorting (Spencer, 2009) are used to
develop the navigation menus of web sites. This technique requires much time and effort from
developers and most of this effort is wasted as soon as the structure of the menu is established
and fixed in a menu that becomes something static. If new kinds of items are introduced or a part
of the content becomes more relevant, the Card Sorting should be repeated, at least in part.

In the case of web sites build on top of semantic data we have the opportunity to automate
part of the process of generation and maintenance of the navigation menus. This is possible
because semantic data is structured by thesauri and ontologies, which hierarchically organise the
kinds of things described in the dataset. They specify all the classes or concepts12 but also which
entities belong to a certain class or are related to a certain concept.

Consequently, if there are fewer instances of a class or related concepts, or none not at all, the
class or concept should be less relevant in the menu bar. On the contrary, those that do have
many members should be shown prominently in the menu bar. To achieve this, we obtain the
hierarchical structure of the classes or concepts instantiated or used in the dataset. For each class
it is also computed the number of instances and for concepts how many times is referred as the
subject for a resource. All this information is retrieved using the SPARQL.

Then, the hierarchy is flattened to the amount of levels required because this component can
generate both global and local menus, i.e. a menu for the whole dataset or just for a subset of it.
The site administrator can also configure some parameters: the number of levels in the menu, the
number of items in each level, the order of items (alphabetically or by number of instances) and a
list of classes or concepts to omit.

According to these parameters, this component generates the menu applying a recursive
algorithm that mainly performs two operations:

12 SKOS Simple Knowledge Organization System, http://www.w3.org/2004/02/skos/

● Split the concepts or classes with an extensive number of members in their narrower
related concepts or subclasses.

● Group those with few members into a broader concept or superclass.
For instance, Fig. 2 illustrates how the seven slots defined for a submenu corresponding to the

DBpedia class “Species” are filled starting from the original class hierarchy and instantiation
counts. At first, there are just three slots occupied, the direct subclasses of “Species”, so the most
instantiated one, “Eukariote” is split and its direct subclasses become direct subclasses of
“Species”. They occupy two additional slots, three are still free, so the most instantiated one of
the four is split, i.e. “Animal”. It has more than four direct subclasses so now it is necessary to
merge the less instantiated classes until there are just four direct subclasses. The class resulting
from the merging is automatically labelled “Other Animal”. Fig. 3 shows the full navigation
menu generated for DBpedia, with all the submenus expanded. Note that users will just see at
most one submenu expanded at a time, i.e. the one they have hovered.

Eukariote
143504

Species
146082

Plant
39528

Animal
96534

Bacteria
163

Archaea
164

Fish
11134

Insect
36245

Bird
12334

...

Bacteria
163

Archaea
164

Mollusca
8677

Mammal
8274

...

Fish
11134

Insect
36245

Bird
12334

Plant
39528

Other Animal
32881

Species
146082

Fig. 2. Generating a navigation submenu for DBpedia species with seven slots
(left original, right result)

Fig. 3. The full navigation menu for DBpedia, with all submenus expanded

This approach allows showing the navigation bar that best fits the data in the dataset at each

particular moment. For instance, if the dataset changes from containing mainly data about
projects to mainly about publications, the menu would change accordingly to show the part of
the dataset structure about publications more prominently. More details about the
implementation of navigation menus are available from (García, Brunetti, López-Muzás, Gimeno
& Gil, 2011).

3.1.2 Treemap
Navigation menus are quite effective because lay users are comfortable with them, most website
feature them and they are used to interacting with them. However, they just provide and
overview of the most frequent classes, those more instantiated. In order to gain a more detailed
overview, web sites usually apply the Directory Navigation pattern through different sorts of
sitemaps.

However, such detailed overviews are difficult to generate with large heterogeneous semantic
datasets, which is the typical case with Linked Data. A common approach to obtain an overview
and support the exploration of large datasets is to structure them hierarchically (Elmqvist &
Fekete, 2010). Hierarchies allow users to visualize different abstractions of the underlying data at
different levels of detail. Visual representations of hierarchies allow creating simplified versions
of the data while still maintaining the general overview.

There are several techniques for visualizing hierarchical structures. One approach to provide
high-level overviews is Treemaps (Shneiderman, 1992). Treemaps use a rectangle to show the
tree root and its children. Each child has a size proportional to the cumulative size of its
descendants. They are a good method to display the size of each node in a hierarchy. However,
since treemaps are not so effective if the user wants to perform an exhaustive exploration or if
the item the user is looking for is a known one, we complement treemaps with more classical
overview components like site map and site index (Goldberg & Helfman, 2005).

We have implemented a Treemap component using the Javascript InfoVis Toolkit library, as
shown in Fig. 4. The Treemap shows an overview of the class hierarchy in the dataset and it is
possible to interact with it. Users can zoom in and zoom out to go deep into the class hierarchy.
This way, the Treemap visualization supports the overview and zoom tasks proposed by
Shneiderman.

The starting point to generate the Treemap for a dataset is also, like for navigation menus, a
data structure capturing how the classes instantiated by the dataset are hierarchically structured,
plus how many direct instances does each class have. In this case, however, this structure is not
flattened but reproduced as a Treemap with sizes proportional to the number of instances. Just
classes too small to be represented in the Treemap are grouped and labelled “Others”.

Fig. 4: Treemap providing and overview of the DBPedia dataset an information about the size of
each of the classes structuring this dataset (it is interactive so users can gain access to classes
deeper in the hierarchy than the two first levels shown in the figure).

3.1.3 Site Map and Site Intex
The navigation menus presented in Section 3.1.1 are quite effective because lay-users are
comfortable with them, most website feature them and they are used to interacting with them.
However, they just provide an overview of the most frequent classes, those more instantiated.
Treemps provide a more detailed overview of the dataset, however they still require a lot of
exploratory interaction from the user and, because they are less common, they are harder to use.

In order to gain a more detailed overview, many web sites usually apply the Directory
Navigation pattern through different sorts of sitemaps. Site maps act as a navigation aid by
providing an overview of the site's content at a single glance. Moreover, they are widely use so
they are easier to use, though they do not provide the visual feedback about the significance of
the different parts of the dataset that is provided by Treemps.

HTML site maps are designed to help users find content on the website. A site map is a web
page that lists all the pages of a website, normally organized hierarchically. In the case of large
sites, instead of containing links to all the pages, they can list the main pages (e.g. categories) of
the site. When the site contains many levels in the structure and many elements on each level the
site map functions as a navigation alternative to navigation menus.

We have implemented two different versions of the sitemap and users can switch between
them. The first one reflects the original hierarchy of the dataset. It is showed as a tree with
multiple levels and the users can expand it. The second one is related with the structure of
navigation menus, which has been generated from the original hierarchy. It complements the
main site navigation and users can find there options that were are not directly available from
navigation bars, as shown in Fig. 5.

Fig. 5: Summarised sitemap for the DBPedia datasetTreemap for gaining overview on a dataset
in Rhizomer.

In addition to site maps and Treemaps, evaluations with users show that there are tasks, like

known item searches, where they are more confortable with site indexes (Brunetti, 2013). A site
index is a navigational and informational tool that lists all the pages or categories
alphabetically. Sometimes users spend a lot of time looking through the site map. While a site
map provides a general view of the overall site contents, an A-Z index provides access to
particular content. An alphabetical list can better suit users' mental model when they are
searching for a specific page. However, while site maps can give users context, site indexes
provide no context. Non-related categories appear in the site index without giving users any
additional information. Therefore, we have implemented the site index so that it provides also
context information of each class. When the user moves the pointer over an element an overlay
appears showing its parent and its subclasses, as shown in Fig. 6.

Fig. 6: Site index for the DBPedia dataset with A-Z entry points and popups that contextualises
the classes in the underlying class hierarchy.

3.2 Facets
Users do not always know exactly what they are looking for and, sometimes, they do not even
know what its name is. Sometimes they are unfamiliar with the domain or they want to learn
about a certain topic. This is particularly true when exploring Semantic Web datasets. In these
cases, exploratory search is a strategy that allows users to refine their search by successive
iterations. An exploratory interface such as faceted browsing allows users to find information
without a priori knowledge of its schema.

With navigation menus or Treemaps we can make the user aware of the hierarchical structure
of a dataset but, once they choose the class of things they are interested in, they face the barrier
of not knowing how they are described. In other words, what are the main properties that
describe them, which ones are the more relevant for that particular kind of things, the range of
values they have in that particular case, etc.

Faceted navigation is an exploratory technique for navigating a collection of elements in
multiple ways, rather than a single and pre-determined order. Facet browser interfaces provide a
user-friendly way to navigate through a wide range of data collections. Traditional facet
browsers relied on manual identification of the facets and on previous knowledge of the target
domain.

When dealing with semantic data, it is possible to automate this process and a semantic
faceted browser will be able to handle any RDF dataset without any configuration requirements.
Since semantic data facilitates integrating data from different of sources, we cannot assume a
single fixed schema for all data. Consequently, a semantic data faceted browser should be
scalable and generic, not depending on a particular dataset structure.

To compute the facets, Rhizomer performs SPARQL queries that retrieve all the properties
for each class, which will become the facets when exploring it, the frequency of each property
for the given class and the number of different values that each property can have for the given
class. The frequency and the number of different values are used to help decide if a property is
worth including it as a facet for the corresponding class faceted view. For instance, a property
that is used in 10% of the class instances descriptions, that has just one possible value or that has
a different value for each instance is not very useful in the faceted view.

For datasets with many classes and properties, these queries become quite easily costly to
compute and delay too much user interaction. Consequently, they are just calculated the first
time Rhizomer is deployed on a dataset and stored in a data structure. They are then updated
whenever the dataset is changed through Rhizomer in an incremental way.

However, there are other queries that are generated while the user interacts through the facets.
For instance, when the users asks for the most common values of a class facet. These common
values are shown, in increments of 5 values, as part of the facet when the user clicks on
“Common values” as shown in Fig. 7. This is not just the list of the most common values for that
particular class and property. Other previous restrictions set by the user through other facets
should be also taken into account. Consequently, these are the most common values for that facet
for the set of resources currently selected.

Moreover, if the user sets further restrictions, all the lists of common values should be
updated. This can delay a lot user interaction so this, in conjunction with the interferences set by
previous filters, is the main reason to avoid pre-computing the list of common values and to do
so at interaction time. In any case, to reduce the common values to be updated after each user
interaction, all facets are initially shown with the list of common values collapsed. The are only
expanded as a result of user interaction and just those that have been expanded are updated when
the user sets constraints by checking facet values.

Fig. 7. Graphical representation of a facet in Rhizomer showing 5 common values and search
box with autocomplete

In addition to expandable common values lists, facets feature a search box. This box allows

searching among the facet values for a specific one, specially useful when it is not a common
one. However, this requires that the user knows the desired value. To mitigate this, the search
box features an autocomplete function that allows the user exploring facet values based on what
the user has typed so far.

The filters applied so far by the users are converted into filters in the resulting SPARQL

query. These filters are used both to compute the common values and to compute the instances of
the class for which the faceted view is shown that satisfy all the filters applied so far. For
instance, Table 2 shows the SPARQL generated after the user filters the continent facet using the
“Oceania” value in the “Country” class faceted view. The type constraint in line 3 is generated as
a result of switching to the “Country” faceted view, for instance by selecting the class in the
navigation menu. The user then filters the “Country continent” facet to the value “Oceania”,
which produces the constraints in lines 4 and 5. Altogether, the resulting SPARQL query selects
all the countries with country continent equal to “Oceania”.

Table 2. SPARQL query generated as a result of filtering the facet “Country continent” for the
class “Country” to the value “Oceania”

(1)	
 SELECT	
 DISTINCT	
 ?r3	
 	

(2)	
 WHERE	
 {	

(3)	
 	
 	
 	
 ?r3	
 a	
 movie:Country	
 .	

(4)	
 	
 	
 	
 ?r3	
 movie:country_continent>	
 ?r3var0	

(5)	
 	
 	
 	
 FILTER(str(?r3var0)=”Oceania”)	
 }	

3.3 Pivoting
From the point of view of OLAP systems, pivoting or rotation is described as an operation
producing a change in the dimensional orientation of data. For instance, if data is initially
aggregated by Product, Location and Date, by pivoting, the user can aggregate, for
instance, by Location, Date and Product. However, for richer data models pivot
navigation is “a way to restart a search from the results of a first search” (Sacco & Tzitzikas,
2009, p. 83).

Usually, the type of resources to be browsed (e.g. book, car, paper) remains fixed in a faceted
browsing application. However, when pivoting is added to faceted navigation, it allows
switching the type of displayed entities based on relations to the current result set. For instance, a
user who is filtering films using film facets, e.g. director is “Woody Allen”, then pivots to actors.
As a result of this action, the user will see now all actors who are related to any film in the
previous filtered set. From there, the user can continue filtering but now using actor facets, e.g.
country is “Spain”.

It is possible to establish an analogy between pivoting and natural language. Indeed, the query
above can be rephrased as “Show actors from Spain, which have acted in films directed by

Woody Allen”. The idea of pivot is reflected by the fact that the set of “Spanish actors” in the
main sentence also appears in the relative sentence as the relative pronoun “which”. The relative
pronoun points to the facet to browse for a pivot, in this case “acted in”.

Pivot steps can be repeated, e.g. pivot on countries from actors and filtering for continent
“Europe”. Each pivot step corresponds to a nested relative sentences, such as “Show European
countries, where an actor has been born, who has acted in a Woody Allen film”. We have
profited from this resemblance to natural language to generate more usable breadcrumbs that
help users to contextualise their exploration and know why they are getting the list of results that
they are looking at as a result of their filtering and pivoting steps so far. Fig. 8 shows the user
interface components used to enable the pivoting operation and one example of breadcrumbs.

The next section illustrates the importance of offering pivoting to users exploring semantic
data, as shown in an evaluation of a pre-pivoting version of Rhizomer with lay users. The
implementation details are then presented in Section 3.3.2.

Fig. 8. Pivoting enhancements: pivot-able facets with arrow icon, breadcrumbs as natural
language rendering of the query in the middle and “Navigate to” box with pivoting destinations
on the right

3.3.1 Motivation
Pivoting is not a common feature of existing semantic data exploration tools, as we already
discussed in Section 2. However, during the tests with lay users that guided the Rhizomer
development following the RITE13 model, it became quite evident that a mechanism like
pivoting was required. More details about the testing environment are available in Section 4 but
it is important to note here that these tests were carried out with 6 lay users and that the main
measures under consideration were effectiveness (percentage of tasks completed) and efficiency
(time to complete a task).

The test object was a deployment of Rhizomer on the Linked Movie Data Base14
(LinkedMDB), a semantic dataset derived from the Internet Movie Database15 (IMDB). The test
facilitator proposed users, among others, the following task: “Find three films where Woody

13 Rapid Iterative Testing and Evaluation (Medlock, Wixon, Terrano, Romero & Fulton, 2002)
14 LinkedMDB, http://linkedmdb.org
15 IMDB database http://www.imdb.com

Allen is the director and also an actor”. The full findings derived from the test are available from
(Brunetti & García, 2011), while the ones relevant to motivating the inclusion of the pivot
operation can be summarised as follows:

● None of the test participants was able to complete the task on his own; all of them needed
some guidance from the facilitator.

● Surprisingly, all participants began the navigation from actors instead of films (the
directors were not so evident in the navigation menu, they appear in the second level
because they are few compared to other classes).

When analysing the evaluation results, it became evident that the fact that users started from
actors was the reason why they required assistance. They arrived at a dead-end after filtering
actors by name to just “Woody Allen”. There was no way to “switch” to the set of films he has
acted on and then filter it using the director facet.

The most direct solution to this problem is to add to each class faceted-view some derived
facets, i.e. facets from other classes that are directly connected to the current one through a
property. For instance, add the “directed by” facet to actors derived from the “director” facet of
the films they have acted in. This is similar to the tFacet approach analysed in Section 2.

However, this approach does not scale well because the number of facets for each class gets
easily unmanageable and derived facets quite easily lose their context and become confusing. For
instance, how to distinguish between the “country” facet for author birthplace and a “country”
facet derived from the country of the films the actors has participated in. This motivated the
development of a pivot operation, which works as described in the previous section and is
implemented as shown in the next section.

3.3.2 Implementation
The first step to implement pivot-enabled facets is to determine which ones should provide pivot.
Properties with literal values, for a given class, result in facets that do not provide pivoting. On
the other hand, properties that connect to other resources allow pivoting. In this case, it should be
determined to which class the facet links. The faceted view for that class will become the new
view when pivoting is performed. Moreover, being able to show in the user interface where a
facet does pivot to, helps users understand the nature of this conceptually more complex
interaction.

This distinction is made by analysing the underlying dataset and ontologies. It results in an
additional facet characteristic: its range. The procedure to determine a facet range is the
following:

1. Check if, for the given class and property, there is a restriction at the ontology level that
explicitly defines the property range. This range is selected as the facet range (can be
either a class, a literal or a data type like integer or date).

2. If no restriction is found in the previous step, it is checked if the property has a defined
range at the schema level, which becomes the property range.

3. Finally, if there is no property range, the dataset is analysed and the 5 most common
values for the class and property are retrieved. They are checked to determine whether
they are resources or not.
a. If all the 5 values are resources, then the dataset is queried to determine the most

instantiated classes by the values of the property. Then, the most specific superclass of
these classes is computed. The result is then considered the range of the facet and that
class will become the new faceted view when the user pivots the facet.

b. If not all 5 values are resources, their data type, if present, is retrieved or computed by

trying to parse their values as an integer, double or date. By default, if it is not possible
to determine a more specific data type, the value is considered a string. As no pivoting
is enabled for this kind of facets, the range might be used to create specific facets for
numeric values (like histograms with range selectors) or calendars.

Once the facets that should provide pivoting are determined, this option is offered to users as
part of the facet using an arrow shaped link. Rhizomer keeps track of all pivoting operations and
records the initial class, the pivot property and the target class. Moreover, when pivoting to the
new class, the restrictions applied to the previous ones are kept so they user can combine
restrictions for different interrelated classes and build much more complex SPARQL queries.

For instance, when pivoting from films to actors, after filtering films for which the director is
the resource “Woody Allen (Director)”, the constraints capturing this switch are introduced in
the generated query shown in Table 3 in lines 3-4. A new variable r2 is introduced together with
its type, i.e. the range of the originating facet. Moreover, the link from the previous variable r1
to the new one is established using the pivoted property. Finally, the selected variable is the new
variable as the focus has changed from films to actors. Fig. 9 illustrates the different sets of
resources that are selected from Films by filtering those directed by Woody Allen and then the
set of Actors selected after pivoting from the previous set of Films through the Film facet
corresponding to the “actor” property.

Table 3. Generated SPARQL query after filtering films with director Woody Allen and then
pivoting to actors through the property movie:actor
(1)	
 SELECT	
 DISTINCT	
 ?r2	
 	

(2)	
 WHERE	
 {	

(3)	
 	
 	
 	
 ?r2	
 a	
 movie:actor	
 .	

(4)	
 	
 	
 	
 ?r1	
 movie:actor	
 ?r2	
 .	

(5)	
 	
 	
 	
 ?r1	
 a	
 movie:film	
 .	

(6)	
 	
 	
 	
 ?r1	
 movie:director	
 <http://data.linkedmdb.org/resource/director/8501>	
 }	

Actor DirectorFilm directoractor

Woody Allen (director)

Films directed
by Woody Allen

Actors in Films
directed by

Woody Allen

Fig. 9. Set of Films after filtering those directed by Woody Allen and set of Actors selected after
pivoting from the previous set of Films through the Film facet “actor”

Finally, the pivot operation also motivated us to consider some sort of breadcrumbs that help

contextualise user interaction. Previous tests with users showed that they got lost easily after
moving around the underlying graph models. Breadcrumbs should show the path that the user

has followed to arrive to the set of results that is currently displayed. Users should also be
capable of using the breadcrumbs to undo previous filtering and pivoting steps. Currently,
breadcrumbs have been implemented as a natural language representation16 of the SPARQL
query generated as a result of the user interaction so far. Fig. 8 shows on the left part the facets
with the pivoting option; in the centre the breadcrumbs; and on the right a list of classes for
which it is possible to pivot to from the current faceted view, i.e. and alternative to the pivot
arrow shown in the pivoting facets.

4. EVALUATION
This section summarises the results of the first round of user testing after integrating the pivoting
functionality into Rhizomer. The evaluation approach is inspired by the Rapid Iterative Testing
and Evaluation (RITE) Method (Medlock, Wixon, Terrano, Romero & Fulton, 2002), which
involves testing with small groups as part of an iterative development process. The tests were
conducted at the UsabiliLAB17, where sessions were registered using Morae Recorder together
with Morae Observer18 to analyse test data.

The aim of the test was mainly to validate that the introduction of pivoting solves the
problems highlighted in previous evaluations, as described in Section 3.3.1. Six users that were
not involved in the previous evaluation rounds were recruited. Moreover, one of the tasks, Task
2, was identical to one used in previous evaluation rounds. It is used to test if pivoting has
improved efficiency and effectiveness. The complete set of tasks is shown in Table 4.

Table 4. Tasks posed to users during the pivoting testing round.
Task 1 Find 5 films with "Orlando Bloom" as actor.

Task 2 Find 5 films with "Clint Eastwood" both as director and actor.

Task 3 Who has directed more films in countries located in "Oceania".

The efficiency results, i.e. time to complete the task, are shown in Table 5. There are,

highlighted, the results for Task 2 with pivoting, prior to pivoting and the observed
improvement. Efficiency for Tasks 1 and 2 is also presented. More details about previous
evaluations are available in (García, Gimeno, Perdrix, Gil, Oliva, López, Pascual & Sendín,
2010).

The first finding has been that the introduction of pivoting corresponded to a great increase of
efficiency, with a 30% reduction in the mean time necessary to complete Task 2. However, the
most promising outcome is that the biggest improvement has been in the reduction of the
maximum time on tasks, with 57% improvement. From the point of view of effectiveness, it is
important to note that all users completed Task 2 without facilitator help, while in the previous
iteration, for the same task, all users required facilitator assistance.

Table 5. Efficiency and effectiveness measures for the tasks in Table 4 plus comparison with pre-
pivoting results for Task 2.

16 http://sparql2nl.aksw.org
17 UsabiliLAB, http://griho.udl.cat/en/infraestructures/usabililab.html
18 Morae, http://www.techsmith.com/morae.html

 Task 2
with
pivoting

Task 2
pre-
pivoting

Improvement Task 1
with
pivoting

Task 3
with
pivoting

Time on task
(minutes)

Minimum 0.89 1.05 15% 1.00 1.99

Maximum 2.23 5.23 57% 4.53 4.50

Mean 1.69 2.41 30% 1.61 3.43

Standard Dev. 0.57 1.49 62% 1.21 0.96

Task completion Without
assistance

100% 0% 100% 100% 0%

Including
assistance

100% 100% 0% 100% 100%

This is related with the fact that, thanks to pivoting, all users were able to find their path to

solve the task without requiring assistance. On the contrary, in pre-pivoting tests most users got
lost when trying to complete the tasks starting from actor or director instead of from film. With
pivoting all users were able to complete the task independently of their starting point.
Consequently, the maximum time is reduced significantly.

However, there is still much room for improvement as it can be observed in the still quite low
efficiency when performing Task 3. The following issues were identified and some proposals to
solve them are presented in the conclusions and future work section:

● It was difficult for users to identify the pivoting button. Moreover, the box labelled
“Navigate to”, that also contained the list of facets that provided pivoting, was far from
the facets and hard to identify. Finally, some users thought that following one of this
pivoting links meant starting the exploration from the target class from zero, loosing all
the restrictions applied so far through facets.

● Users also experienced many contextualisation problems, not being completely obvious
for them what was presented to them at the screen. The breadcrumbs helped solving this
once the users realised they were available. However, it took some time for most of the
users to understand this.

5. CONCLUSIONS AND FUTURE WORK
After some rounds of development and testing with end-users, Rhizomer is capable of publishing
semantic data while facilitating user awareness of what information is contained in the dataset.
Awareness is accomplished by components borrowed from the Information Architecture
discipline and generated automatically from the dataset structure and ontologies. They are
navigation menus and treemaps, which show the main kinds of items in the dataset, and facets,
which show the more significant properties for different kinds of items and their values. While
facets are common in many Semantic Web exploration tools, the presence of interface

components that provide an overview of the dataset beyond lists of classes or properties is a
novel contribution of Rhizomer, as detailed in the related work review.

Our preliminary tests with users showed that Rhizomer facilitates the exploration of the
published datasets, and also highlighted some issues. The last addition, motivated during
previous evaluation rounds, is pivoting. It corresponds to allowing users to move from the view
of a particular class of resource, e.g. Actors, to another class of related resources, e.g. Film, while
preserving the previous filters. It provides a great level of flexibility to the interaction and avoids
dead-ends due to the way the data is structured.

Pivoting has allowed reducing the mean time to complete a particular task, thus improving
efficiency, by a 30%. Moreover, the maximum time has been reduced by almost a 60% as a
result of the fact that now, contrary to the tests prior to the introduction of pivoting, all users
were able to complete the task without assistance.

However, the main improvement is that pivoting empowered users to build much more
complex queries to explore the data, without requiring knowledge of Semantic Web query
languages or the vocabularies used in the explored datasets. For instance, it is possible to express
queries such as “Who has directed the most films in countries located in Oceania”.

The remaining issues, spotted during the last evaluation, are mainly related to the fact that the
interface components providing pivoting are not so evident for users. Moreover, they suppose a
conceptual shift that should be mitigated. For instance, some users understood pivoting as
restarting the exploration for a new class of resources.

One possible way to overcome these limitations of pivoting is to try to integrate it with facets,
so that users do not need to move their attention from facets, and also to make it clearer that the
filtering done so far is not going to be lost. One way to achieve this is to present pivoting as a
way of performing some advanced filtering on a facet. This way, users can start doing “classical”
filtering using the labels of the facet values. For instance, filter the actors for a film using the
actor facet and the actor labels. However, if they get stuck because they need a more
sophisticated filter, we can make pivoting available as a way of attaining advanced filtering.

In our tests, users looked for films from countries in Oceania but got stuck because the
country facet showed just country names. Some of them pointed out that they needed to filter the
countries by continent but did not see pivoting as the solution to their problem. The idea is that
we can link their need of performing “advanced filtering” to pivoting.

Another path to explore is related with overview visualisations. Alternative visualisations will
be analysed and approaches that go beyond overviewing the hierarchical structure of the dataset
will be also considered. For instance, overviews of how the different kinds of resources in the
dataset are related through a particular property or set of properties.

Finally, future work will also focus on improving the performance of the proposed approach,
optimising the SPARQL queries or looking for alternatives like pre-computed indexes. The aim
is to be able to deploy Rhizomer live on top of existing SPARQL endpoints, or at least part of its
functionality.

ACKNOWLEDGEMENTS
This work has been partially supported by the research projects InDAGuS, Infrastructures for
Sustainable Open Government Data with Geospatial Features (Spanish Government TIN2012-
37826-C02), and MediaMixer, Community and Networking for the Remixing of Online Media
(European Commission FP7-ICT 318101).

REFERENCES
Araújo, F. C. S., Schwabe, D., & Barbosa, D. J. S. (2009). Explorator : a tool for exploring RDF
data through direct manipulation . Proceedings of the Linked Data on the Web Workshop
(LDOW 2009) (Vol. 538, pp. 1613–1673). Madrid, Spain: CEUR Workshop Proceedings.
Becker, C., & Bizer, C. (2009). Exploring the Geospatial Semantic Web with DBpedia Mobile.
Web Semantics: Science, Services and Agents on the World Wide Web, 7(4), 278–286.
Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems, 5(3), 1–22.
Brunetti, J.M., García, R. (2011). Information Architecture Automatization for the Semantic
Web. Proceedings of the 13th IFIP TC 13 International Conference on Human-Computer
Interaction, Interact’11 – Vol. 4, pp. 410–413. Springer-Verlag, Berlin, Heidelberg.
Brunk, S., & Heim, P. (2011). tFacet: Hierarchical Faceted Exploration of Semantic Data Using
Well-Known Interaction Concepts. Proceedings of the International Workshop on Data-Centric
Interactions on the Web (DCI 2011), CEUR-WS.org (Vol. 817, pp. 31–36).
Elmqvist, N., Fekete, J.D. (2010). Hierarchical aggregation for information visualization:
Overview, techniques, and design guidelines. IEEE Trans. Vis. Comput. Graph., 16(3), 439–454.
García, R., Brunetti, J.M., López-Muzás, A., Gimeno, J.M., Gil, R. (2011). Publishing and
interacting with linked data. Proceedings of the International Conference on Web Intelligence,
Mining and Semantics. pp. 18:1–18:12. ACM, New York, NY, USA.
García, R., Gimeno, J.M., Perdrix, F., Gil, R., Oliva, M., López, J.M., Pascual, A., Sendín, M.
(2010). Building a Usable and Accessible Semantic Web Interaction Platform. World Wide Web.
13, 143–167.
Garrett, J.J. (2010). The Elements of User Experience: User-Centered Design for the Web and
Beyond (2nd edition). Indianapolis, IN, United States: New Riders.
Goldberg, J.H. & Helfman, J.I. (2005) Enterprise Network Monitoring Using Treemaps.
Proceedings of the Human Factors and Ergonomics Society, 49(5), 671-675.
Hearst, M. A. (2006). Design Recommendations for Hierarchical Faceted Search Interfaces.
ACM SIGIR Workshop on Faceted Search.
Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., & Stegemann, T. (2009). RelFinder:
Revealing Relationships in RDF Knowledge Bases. In T.-S. Chua, Y. Kompatsiaris, B. Mérialdo,
W. Haas, G. Thallinger, & W. Bailer (Eds.), Semantic Multimedia, Lecture Notes in Computer
Science (Vol. 5887, pp. 182–187). Springer Berlin / Heidelberg.
Heim, P., Ziegler, J., & Lohmann, S. (2008). gFacet: A Browser for the Web of Data. In S. Auer,
S. Dietzold, S. Lohmann, & J. Ziegler (Eds.), Proceedings of the International Workshop on
Interacting with Multimedia Content in the Social Semantic Web (IMC-SSW’08) (pp. 49–58).
CEUR-WS.
Huynh, D., Mazzocchi, S., & Karger, D. (2007). Piggy Bank: Experience the Semantic Web
inside your web browser. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(1), 16–27.
ISO/IEC-25010. (2011). ISO/IEC 25010-3: Systems and software engineering: Software product
quality and system quality in use models. ISO Press.

Medlock, M.C., Wixon, D., Terrano, M., Romero, R.L., Fulton, B. (2002). Using the RITE
method to improve products: A definition and a case study. Proceedings of the Usability
Professionals Association, Orlando, Florida, USA.
Millen, D. R., Feinberg, J., & Kerr B. (2006). Dogear: Social bookmarking in the enterprise.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’06 (pp.
111-120). New York: ACM Press.
Morville, P., Rosenfeld, L. (2006). Information Architecture for the World Wide Web. O'Reilly
Media, Cambridge, MA.
Pietriga, E. (2006). Semantic web data visualization with graph style sheets. Proceedings of the
2006 ACM Symposium on Software Visualization, SoftVis ’06 (pp. 177–178). New York, NY,
USA: ACM Press.
schraefel, m. c, & Karger, D. (2006). The Pathetic Fallacy of RDF. Proceedings of the
International Workshop on the Semantic Web and User Interaction (SWUI’06). Athens, USA.
Shneiderman, B. (1992). Tree visualization with tree-maps: 2-D space-filling approach. ACM
Transactions on Graphics, 11(1):92–99.
Spencer, D. (2009). Card Sorting, Rosenfeld Media, New York, USA.
Wang, T. D., & Parsia, B. (2006). CropCircles: topology sensitive visualization of OWL class
hierarchies. Proceedings of the 5th international conference on The Semantic Web, ISWC’06
(pp. 695–708). Berlin, Heidelberg: Springer-Verlag.
Zhou, D.X., Oostendorp, N., Hess, M., & Resnick, P. (2008). Conversation pivots and double
pivots. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI’08 (pp. 1009-1012). New York: ACM Press.

