
Publishing and Interacting with Linked Data
Roberto García, Josep Maria Brunetti, Antonio López-Muzás, Juan Manuel Gimeno, Rosa Gil

Universitat de Lleida
Jaume II, 69

25001 Lleida, Spain
+34 973702742

{rgarcia, jmbrunetti, jmgimeno, rgil}@diei.udl.cat, lopezmuzas@gmail.com

ABSTRACT
In order to make a Semantic Web dataset more usable to a wider
range of users, specially Linked Data ones, Rhizomer constitutes
a tool for data publishing in the web that in addition to common
data browsing mechanisms based on HTML rendering, provides
a set of components that facilitate awareness of the dataset at
hand borrowed from Information Architecture. Rhizomer
automatically generates navigation menus taking into account
the ontologies used by the dataset and facets based on how
properties are instantiated for each of the classes in the dataset.
This makes it possible for users to easily be aware of the main
kinds of things in the dataset but also their main properties and
the values the take while they perform faceted navigation. These
generic IA components are complemented with specialised
interaction services that can be dynamically deployed and
associated to resource using semantic web services. Among
these services, Rhizomer features one that provides simple
edition of the data using autocomplete forms guided by the
ontologies used in the dataset and the available resources.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]

H.5 [Information Interfaces and Presentation]

H.4 [Information Systems Applications]

General Terms
Management, Documentation, Design, Experimentation, Human
Factors.

Keywords
Ontology, Semantic Web, Linked Data, metadata, human-
computer interaction, usability, visualisation.

1. INTRODUCTION
The amount of semantic data available in the Web is increasing
at a really good pace in the last years, as it is shown by
initiatives like Linked Open Data (LOD). The cloud of
interrelated and open datasets included in the LOD cloud has

rapidly evolved, from the 2 billion triples and 30 datasets one
year after its creation in February 2007, to more than 25 billion
triples and 200 datasets in September 2010 [1].

The potential of this huge amount of data is enormous but it is
not being fully realised as end-users, non-linked data experts,
find a great barrier when facing it. The barrier is that most of
this data is available as raw data dumps or SPARQL [2]
endpoints.

For data dumps, it is really complicated to realise what data does
one have at hand, what it refers to and what kind of terms are
used. And it requires some experience in Semantic Web tools in
order to do those.

For SPARQL endpoints, the amount of work required for
grasping the internalities of the data set might be reduced.
Besides, a good knowledge of SPARQL is required in order to
generate and understand a set of queries that allow realising how
big the dataset is, which are the main kinds of things, how are
they interrelated, etc. And in any case, the results from the
queries are not very usable, list of URIs and appearances counts.

The best approach to make a dataset more usable to a wider
range of users is to use some sort of data publishing tool. At
least, this kind of tools usually provides an HTML rendering for
each resource in the dataset. Each HTML page lists all the
properties for the corresponding resource. Pages are interlinked
based on the connections among resources in the underlying
RDF graph and the user can follow HTML links to browse
through the graph.
However, this feature is only useful if the user has some a priori
knowledge about the dataset, especially the URI of a given
resource. There is no way to get at least an overview of the kind
of resources in the dataset. Some data publishing platforms like
OpenLink’s Virtuoso do provide a faceted view on a specific
subset of the data, but in order to get it, it is necessary to provide
an URI or some keywords for textual search.

Consequently, existing tools make very difficult, especially for
an user that deals for the first time with a dataset, to realize what
kind of resources there are, what properties they have and how
they are related.

Our proposal is to draw from the great experience accumulated
in the Information Architecture (IA) domain [3] and reuse and
adapt existing IA components to provide this kind of
information to users. This kind of components is well known to
Web users, as they are present in almost any web page. They are
navigation bars, navigation facets, sitemaps, breadcrumbs, etc.
However, as they just provide a generic but fixed way of
visualising and navigating data, and because we are dealing with
highly heterogeneous data, we complement these IA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WIMS'11, May 25-27, 2011 Sogndal, Norway
Copyright © 2011 ACM 978-1-4503-0148-0/11/05…$10.00.

components with a framework that allows dynamically
deployment and linkage of specific interaction plugins. These
plugins are Semantic Web services that receive RDF data and
provide specific ways of visualisation and interaction with this
data. They are dynamically associated to the resources they can
process based on semantic expressions.
Despite there are already systems that provide this kind of
specialised interaction services depending on resource
characteristics, such as maps, timelines or plots, our approach is
to provide a framework that facilitates their integration and
association to resources in a completely dynamic way.

Overall, the objective is to build a tool, called Rhizomer, that
can be deployed on top of any dataset based on Semantic Web
technologies and publish it, while facilitating user awareness of
what is in there. This awareness is accomplished by IA
components like navigation bars, which show the main kinds of
resources in the dataset, or facets, that show the more significant
properties for different kinds of resources and their values.
Moreover, it is possible to deploy Semantic Web services that
provide specialised ways to interact with the data and analyse it.
We even provide an interaction service that allows performing
simple edition of the data using autocomplete forms guided by
the ontologies used in the dataset and the available resources.

In conjunction, the platform facilitates publishing and browsing
a dataset, like many other similar tools, but also allows that
users realise what is the value of the dataset in the context of
their particular needs. Consequently, it contributes to the
adoption of the Semantic Web by raising the awareness of the
usefulness of the many datasets currently available and thus
motivating the development of specific tools that profit from
them.
The rest of this paper is organised as follows. First, the related
work is presented in Subsection 1.1. Then, Rhizomer is
introduced in Section 2 and its Information Architecture
components are detailed in Section 3. Finally, the future plans
and the conclusions are presented in Section 4.

1.1 Related Work
The first tool that comes to mind when trying to realise what a
dataset is about are Semantic Web browsers. They are especially
useful when dealing with a dataset published as Linked Data
because they provide a smooth browsing experience through the
graph. However, they just provide a view of a resource, or set of
resources, and the properties coming directly out, and eventually
also coming in, the resource, e.g. Disco [4].

However, Semantic Web browsers do not provide additional
support for getting a broader view of the dataset being browsed,
just a view on the current resource or at most of the steps
followed so far using something similar to breadcrumbs. In
some cases it is also possible to get more informative
components like facets but not as part of a generic browser, just
for a given dataset as in the case of the DBPedia Faceted
Browser [5] or \facet [6].

Another interesting feature of many Semantic Web Browsers is
that, in addition to the rendering of properties and values for a
resource, they provide specialised visualisations like maps for
geo-located resources or timelines for time-framed ones, e.g.
Tabulator [7].

However, all browsers we are aware of provide a closed set of
such visualisations and adding more of them requires changes in
the source code. Finally, it is important to note that this kind of
tools makes it possible to browse datasets previously published
as Linked Data. If the dataset is just available as a dump file or
SPARQL endpoint, then some extra tools or a different approach
is needed.

Explorator [8] is a tool that makes it possible to browse a dataset
available as a SPARQL endpoint. Though Explorator makes it
possible to browse the dataset by combining search, facets or
operations on sets of resources, it makes it also difficult to get a
broader view on the dataset other than a list of all the classes or
properties used. The same applies to the Information Workbench
[9]. This tool provides faceted navigation of query results using
Microsoft PivotViewer1 but does not provide any mechanism
that provide a broader view on the dataset.

Other alternatives are Content Management Systems (CMS) or
Wikis with semantic capabilities. Some mainstream CMSs and
wiki systems have started to incorporate semantic technologies.
The most significant case are the Drupal RDF Modules2. These
modules (RDF API, RDF DB, RDF Export, RDF Import and
RDF Schema) are extensions to the basic Drupal functionality
that provide features such as RDF semantic metadata storage,
querying, importation or simple rendering as a table. However,
semantic CMSs, like Drupal or ODESeW [10], are intended
more for content creation than for the importation and
publication of existing. Consequently, they do not provide
features for facilitating access to the imported data.
The same applies to semantic wikis, such as the semantic
extension for MediaWiki. This extension, called Semantic
MediaWiki [11], makes it possible to mix wiki mark-up with
semantic annotations. As in the case of CMSs, it is also possible
to import existing data but the wiki does not provide
mechanisms that facilitate user awareness about the structure of
the data that has been imported.

Finally, there are some tools that are specialised, to some extent,
in publishing Linked Data. The aspect that we consider here is
the kind of support they provide to users when accessing the
dataset and try to get an idea about what it is about.

One kind of these tools is the one that publishes relational
databases as linked data, like D2R Server [12] or ODEMapster
[13]. However, they provide the same kind of view on the
published data that Semantic Web browsers provide, i.e.
resources and their associated properties but no general view on
the dataset.
There are also specialised tools that publish existing datasets or
SPARQL endpoints as Linked Data. Paget is a framework for
building linked data applications. At the moment it is focussed
on publishing data but the intention is that it is capable of
managing updates too. It is resource-centric and data driven.
From the RDF data describing resources identified by their URI
it generates different representations (RDF, HTML, JSON and
Turtle) using content negotiation.

Pubby is similar to Paget. It builds a Linked Data frontend for
SPARQL endpoints with dereferenceable URIs for the resources
in the endpoint and content negotiation. It also features a

1 http://www.microsoft.com/silverlight/pivotviewer/
2 Drupal RDF modules, http://drupal.org/node/222788

metadata extension that provides provenance information.
However, in both cases, the frontends they provide as like those
provided by Semantic Web browser.

To conclude, it is also possible to consider platforms for
semantic data storage and publishing like Talis Platform3 or
OpenLink Virtuoso4. In both cases, in addition to the data stores,
there is an HTML frontend for the datasets beyond SPARQL.
However, like with previous tools, the support for broader
awareness of the dataset structure is very limited.
The most significant contribution is in OpenLink Virtuoso,
which provides a faceted view on a specific subset of the data,
but in order to get it, it is necessary to provide an URI or some
keywords for textual search. Consequently, the facets view is
limited to the resources retrieved from a previous search and
there is no way to previously get an overview of the kinds of
resources in the dataset.

2. RHIZOMER
First of all, Rhizomer5 is based on a simple architecture that
makes it flexible, scalable and capable of adapting to different
deployment and use scenarios. Its core is rooted on simple
HTTP mechanisms and follows a REST approach [14].
Rhizomer also implements content negotiation taking into
account the requested content type thus providing the requested
data in the desired format.

Each resource is managed through the URI referencing where it
is published, thus basing the whole system on a Resource
Oriented Approach. The basic HTTP commands allow
managing each resource: GET retrieves the semantic data
associated with the resource in the requested format, PUT
updates the data for the resource with the submitted one, POST
creates a new resource with the submitted semantic description
and DELETE removes the specified resource and the
corresponding data.

An alternative to this REST approach is to use SPARQL
Update6 as the way to insert, update and delete. However, due to
the lack of maturity of the update language, which is currently
being standardised, and the benefits of a REST approach [15],
especially in relation with facilitating the integration with
external services, we have adopted this approach as the basic
way to manage the stored data.

In any case, the GET command is also used to pose semantic
queries based on the SPARQL query language [16] like in any
SPARQL endpoint. Consequently, it is also possible to use this
approach to benefit from SPARQL Update, which might be
more convenient when various resources are updated
simultaneously.

All the previous HTTP commands, and the SPARQL queries,
are then forwarded to the underlying data store, see Figure 1.
Currently, Rhizomer integrates connectors for Jena and
Virtuoso. These connectors make it possible to implement all the
data management operations, especially updates, using the
REST mechanism independently of the SPARQL Update
availability.

3 http://www.talis.com/platform
4 http://virtuoso.openlinksw.com
5 http://rhizomik.net/rhizomer
6 http://www.w3.org/TR/sparql11-update

Rhizomer also has a generic connector for any repository
providing a SPARQL interface. In this case, if the repository
offers a SPARQL Update implementation, it is also possible to
perform insertions, updates and deletions through the Rhizomer
REST interface. All this functionality is encapsulated in the
server part of the Rhizomer tool.
On the other hand, the client-side functionalities have been
developed with the aim of improving the usability of the user
interface. They are deployed in the user’s browser and
implemented using JavaScript and asynchronous HTTP calls
(AJAX [17]), thought most of the functionality is also available
without JavaScript in order to improve accessibility [18].

All the interactions with the user are built on top of the REST
operations. However, the RDF syntax of semantic data is
completely hidden in order to increase usability. Like many
Semantic Web browsers of data publishing tools, Rhizomer
provides an HTML view on the data that also facilitates the
navigation across the data graph, as detailed in Section 3.1.

Rhizomer
(server)

G
ET

swrc:ResearchProjecttype
homepage
label Rhizomer

http://rhizomik.net/rhizomer

+

PU
T

PO
ST

D
ELETE

http://rhizomik.net/rhizomer

VirtuosoStore

JenaStore

homepage http://rhizomik.net/rhizomer

Rhizomer a Research Project

Edit

About Organization (1) Person (5) Project (1) Contact

Rhizomer (client)

login

Virtuoso
Data
Store

SPARQL

Figure 1. Rhizomer architecture overview

However, as it has been shown in the related work section, this
approach does not contribute towards an awareness of the
overall structure of a dataset. In order to provide such
functionality, Rhizomer features a set of components inspired by
those common in Information Architecture. The added value is
that in the case of Rhizomer, these components are
automatically generated and updated from the data and
ontologies in the published dataset, as described in Section 3.

Besides, Rhizomer incorporates Semantic Web services
providing specialised interaction means beyond generic
browsing. Each user action corresponds to a Semantic Web
service whose description incorporates the constraints a resource
must satisfy to be a valid input for the service. Consequently, the
semantic description of a resource determines which actions can

be applied to it. In Section 3.5 this mechanism for dynamically
associate resources to interaction services will be completely
described.

The previous mechanisms for generic data browsing, awareness
of the data structure and specialised interaction for data analysis
constitute the mechanisms that Rhizomer offers to publish data
in a way that allows users realizing their potential value.
However, in many cases, data is generated through not
completely reliable mechanisms that introduce different kinds of
errors or lacks.

The awareness mechanisms facilitate the detection of these
errors and, in order to mitigate the reduction in the value
perceived by the user when detecting them in a dataset,
Rhizomer also features a mechanism for data edition. Edition is
implemented through HTML forms with autocomplete that
assist the user during the edition process. Properties and values
are recommended taking into account what the user types and
the data and ontologies in the dataset, as it is detailed in Section
3.6.

3. INFORMATION ARCHITECTURE
COMPONENTS
Although the semantic query forms make it easier for users to
query a given dataset taking profit from its semantic structure,
user tests show that this is not the more convenient way of
making users interact with a dataset, specially when it is the first
time they face it.

When users interact with a dataset with an unknown structure,
they require mechanisms that show the underlying structure
more clearly that simple keyword-based forms. Event the
semantic form presented in the previous section, though they
show the more relevant properties for a given kind of resources,
require a way to make the user aware of the kinds of resources
available in the dataset.
When evaluating different mechanisms to make users aware of
the structure of the information they are facing trough web
pages, we came to the Information Architecture (IA) discipline
[3] and the huge amount of experience it has accumulated about
how to structure a web site to make it easier for users to have
access to the information it contains.
Information Architecture identifies four kinds of systems:

• Organisation systems: they allow presenting information in
different ways, following different schemas that make it
possible to group or differentiate information using
different criteria, like chronological or alphabetic order.

• Navigation systems: they help users move across the
available information. For instance, there are navigation
bars or site maps.

• Labelling systems: they describe categories, options and
links using terms that are meaningful for users. They are
all around the information architecture of a site, even as
part of other systems, e.g. navigation bars labels.

• Search systems: they allow users to search specific
information chunks based on some sort of keywords. They
also offer mechanisms to restrict the search space.

In the context of an information architecture rooted on semantic
data, it is quite natural to develop organisation system
components that profit from the underlying ontologies and

schemas. These components tend to be quite specific to the
criterion used for information organisation and, as it is shown in
Section 3.5, we have faced the integration of such specific
components into Rhizomer using a framework for the
deployment of these components based on web services.

Another way to make users benefit from the many ways
semantic data can be organised is through facets. These
information architecture components are part of the navigation
system and our approach to deploy them on top of semantic data
is presented in Section 3.4.

However, facets are useful when the user does already have
focused on some particular kind of resources and the many ways
to organise them using the properties they have in common are
shown as facets. Before this faceted navigation is performed, a
more general view on the dataset is required. The best
candidates for this are global navigation systems.

Global navigation systems typically take the form of navigation
bars that, in the case of web sites, are present in all pages. They
provide a view of the main kinds of things covered in an
information system. The rest of the IA systems have been also
considered in the context of Rhizomer. Labels, as in the case of
generic data browsing presented in Section 3.1, and search, as it
is shown in Section 3.2.
The drawback of all these IA systems is that they are quite
expensive to develop and maintain. Fortunately, when they are
built on top of the highly structured data typical in the Semantic
Web and Linked Data, it is possible to automate most of the
development and maintenance work.

Section 3.3 details how global navigation menus are
automatically created and maintained in Rhizomer starting from
the underlying ontologies and schemas and how they are
structured and instantiated. A similar approach is taken for
generating facets for each kind of resource and also for
prioritising them taking into account their “utility”, as detailed in
Section 3.4.

3.1 Generic Data Browsing
The client part of Rhizomer provides and generic HTML view
of the data retrieved when performing a GET operation on a
resource. This is a typical feature of Semantic Web browsers
and many Linked Data publishing tools that facilitates the
interaction with users. However, in the Rhizomer case, this view
introduces some particularities.
First of all, the HTML rendering for the data associated to a
resource in Rhizomer includes both HTML and RDFa. This
makes it possible to publish data using diverse methods in order
to improve the visibility of the data. Rhizomer provides the data
for a resource as RDF if this is the requested content type but
even if the request is for HTML, it is possible for machines to
retrieve the original data from the HTML rendering thanks to the
embedded RDFa.

The rendering also tries to facilitate things for human users. First
of all, the HTML features links for all resources and properties.
This is common for resources but not so much for properties.
The intention is to make it possible for users, when they are not
sure about the intended meaning of a property, to click on the
property and get all the data for the property that usually include
comments that might be helpful.

Another feature geared towards improving the usability of the
HTML rendering is that all URIs are replaced with their labels,
when they are available. Moreover, the language tag associated
to the labels is taken into account so it is easy to implement a
multilanguage interface just by providing language tagged label
for resources.
The objective is to avoid the clutter that showing the whole URI
in the interface introduces. Consequently, if there is no label, the
fragment or the last part of the URI is used instead. In order to
avoid the ambiguity that this might introduce, if different URI
share the same fragment, when a user passes the mouse over the
link the whole URI is shown.

In addition to all the labels for the resources and properties that
appear in the data for the resource being browsed, we also
consider appropriate to include all the data for the anonymous
resources that are mentioned. We do so to avoid the lack of
context resulting from showing an anonymous resource isolated
from the identified resources that might refer to it. For instance,
an address resource is usually modelled as an anonymous
resource, cf. the vCard specification7, and it is more informative
for the user to display it together with the resource that is located
at that address.

These requirements, the presence of labels for are resources and
properties and the inclusion of the data for the anonymous
resources, have motivated that we employ a slightly different
approach when building the data fragments that are retrieved
when the data for a resource is requested.

The more common existing approaches are to include all the
triples that have the requested resource as subject or to include
all the triples that have it as either subject or object. None of
these approaches includes the labels for other resources that the
requested one neither the data for the anonymous resources.

For the later, there is the alternative to use Concise Bounded
Descriptions (CBD) [19]. This approach does include all the
data for the anonymous resources referred from the requested
resource but lacks the labels for the other resources and
properties. Consequently, we have specified and implemented a
custom way of building the data fragments for data browsing. It
is based on CBD and adds all the “rdfs:label” properties for all
the resources and properties in a CBD fragment.

For instance, Figure 2 shows how an example graph would be
fragmented following this approach. As it can be seen, there are
two fragments, each one corresponding to an identified resource
described by at least one triple, for which it is the subject. The
first fragment describes http://rhizomik.net/~rosa and includes
an anonymous resource for the address. The second one, for
http://www.udl.cat, can be reached from the first one through a
browsing step. Unlike the address, it is shown independently
because it is not anonymous.

Finally, fragments are rendered using HTML, which is viewable
using a web browser, a tool users feel comfortable with. In order
to generate HTML from RDF, fragments are serialised as
RDF/XML and transformed using an XSLT. The XSL
transformation, which is part of the Rhizomer platform,
guarantees consistent results whenever the input RDF/XML has
been generated from fragments based on the Rhizomer
approach.

7 http://www.w3.org/Submission/vcard-rdf/

http://rhizomik.net/~rosa

http://...vcard#ADR

http://...vcard#Street
Jaume II, 69

http://...vcard#Locality

Lleida

http://...onto#affiliation

http://www.udl.cat

http://...rdf#type

http://...rdfs#label

Rosa Gil

http://...rdf#type

http://...onto#Professor

http://...rdf#type
http://...vcard#work

Rosa Gil a Professor

ADR

affiliation http://www.udl.cat

http://www.udl.cat a Univestity

a work
Street Jaume II, 69
Locality Lleida

http://...onto#University

browsing step

Figure 2. Fragmentation of an example RDF graph and the

resulting HTML rendering
This mechanism has been implemented as successive
DESCRIBE queries for the identified resource URIs to the
SPARQL endpoint. The DESCRIBE operation of the SPARQL
endpoint has been reimplemented in order to build the proposed
fragments, i.e. CBDs plus all the involved labels. Labels are
used, when available, in the place of resources URLs in order to
make the HTML rendering more readable.
Then, the XSL transformation from RDF/XML to HTML is
invoked from the client using AJAX, which is also responsible
for sending the SPARQL queries and making the whole process
go smoothly behind the scenes, making the user experience even
more comfortable. Finally, the AJAX part of Rhizomer at the
client also keeps track of the browsing steps so it is possible to
use the "back" and "forward" browser buttons. Moreover, the
browsing steps are cached at the browser in order to improve
responsiveness.

3.2 Assisted Data Search
Rhizomer features the typical keyword based search but it also
makes possible for users to pose queries that profit from the data
structure. The biggest problem of semantic queries is that users
should be aware of the query language and also of how data is
structured. In order to avoid these problems, Rhizomer features
semantic query forms that are generated taking into account the
underlying ontologies and schemas: moreover, these forms,
when submitted, are automatically translated into the query
language, i.e. SPARQL.

Consequently, Rhizomer allows users to perform semantic
queries without any knowledge of semantic query languages. All
they need is to know how to fill query forms. These forms are
generated dynamically from the kind of resource they are
interested in, more concretely from the properties specific for
that kind of resource.

The kind of resources the users is interested in will usually be
selected from the global navigation bar that usually appears at
the top of the page. There are more details about the navigation
bar in Section 3. The resource kind corresponds to one of classes
used in the dataset. It is used in order to query for all the
properties whose domain is that class or any superclass of it,
plus all the properties for which there is a restriction when the
property applies to that class or its superclasses, e.g. the
ontology statement SubClassOf(:Thesis AllValuesFrom(:author
:Person)) is used in order to retrieve the “author” property as
one applying to the class “Thesis”.

Following these criteria, the properties to be considered for
semantic form generation are retrieved using the SPARQL query
template shown in Table 1. This query retrieves all the

properties specific to a kind of resource, which are then used in
order to generate a form with one input field for each property.
The user can then fill the form in order to establish the search
criteria and when the form is submitted the corresponding
SPARQL query is generated. That query will retrieve all
resources of type the initial class with the properties that have
been filled in the form and whose values contain the input field
filler.

Table 1. SPARQL query that retrieves the properties
specific for a class

SELECT ?p
WHERE {
{ ?p rdfs:domain ?d.
 ?t rdfs:subClassOf ?d.
 FILTER (?t = [CLASS] && ?d != rdfs:Resource) }
UNION
{ ?r rdf:type owl:Restriction.
 ?r owl:onProperty ?p.
 ?t rdfs:subClassOf ?r.
 FILTER (?t = [CLASS]) }}

Moreover, users can add other properties that, without being
specific, might also apply to resources of that kind. These
properties are retrieved using the SPARQL query shown in
Table 2. This query retrieves all properties (RDF properties or
OWL data-type or object-type properties) that are generically
defined as having any resource as domain or that do not have
any domain defined.

Table 2. SPARQL query that retrieves the properties
specific for a class

SELECT ?p
WHERE {
 ?p rdf:type ?t.
 FILTER(?t = rdf:Property ||
 ?t = owl:DatatypeProperty ||
 ?t=owl:ObjectProperty)
 OPTIONAL {?p rdfs:domain ?d}
 FILTER(?d=rdfs:Resource || !bound(?d))
}

The resources selected by the query are presented together with
their description, i.e. all the metadata describing them. To do
that, the generated SPARQL query is a DESCRIBE one with the
type and property restrictions for the filled form fields in the
WHERE clause. The procedure is the one described in Section
3.1, the DESCRIBE query retrieves the CBD for the selected
resources plus all the involved labels. Then, the retrieved RDF
data is rendered as HTML. It is also possible, if the amount of
resources or the amount of data for each resource is to big, to
generate a CONSTRUCT query that just generates the basic data
for each resource, e.g. types, labels and descriptions. If the user
is interested in a particular resource in the query results listing, it
is possible to click it and get the whole description using a
DESCRIBE query for the resource URI.

As it has been shown in this section, the semantic forms profit
from the underlying ontologies. However, in many cases the
actual data does not follow the underlying ontologies, or there
are not restrictive enough to retrieve the information required for
semantic forms. In order to deal with these cases, we are
planning to also use statistics about the data in order to guide
semantic forms generation. This is currently future work but we
are already performing this data analysis when generating the
information architecture components detailed in the next section.

3.3 Navigation Menus
Navigation menus, in the case of website, let users navigate
through different sections and pages of the site. They tend to be
the only consistent navigation element, being present on every
page of the site.

Traditionally, user-centred design techniques are used to
develop the navigation menus of a site. The typical one is Card
Sorting, where users are given a set of cards labelled with the
main topics of the site and they group these cards following their
own criteria. In order to generate menus as meaningful as
possible for the broader range of users, the card sorting is
repeated with different users.

This process requires a lot of time and effort from developers.
Moreover, most of this effort is wasted as soon as the structure
of the menu is established and fixed in a menu that becomes
something static. If new kinds of items are introduced or a part
of the content becomes more relevant, the Card Sorting should
be repeated, at least in part.

The opportunity in the case of web sites build on top of semantic
data is to automate part of the process of generation and
maintenance of the navigation menus.

The objective is to generate a global navigation menu that takes
into account all the classes considered in a dataset but also how
they are instantiated. Consequently, if there are few instances of
some classes or they are not instantiated at all, they should be
less relevant in the menu bar. On the contrary, classes that do
have a lot of instances should be shown prominently in the menu
bar. This way the menu facilitates the access to the more
significant classes but also makes it possible for new users to
realise what are the main kinds of things in a dataset.
To do this, we use the Jena Ontology API to obtain a
hierarchical list of domain classes and apply inference rules to
get new relations between them. This list of classes is stored in a
data structure and then used to generate the navigation menu.
For each class we save information about the number of
instances of the class, its URI, its labels and a list of its
subclasses. Using this information it is possible to generate a
hierarchical menu that represents all the classes of the domain.

This component can generate both global and local menus, i.e. a
menu for the whole dataset or for a subset of it. The site
administrator can also configure some parameters:

• The number of levels in the hierarchical menu.

• The number of items in each level of the menu.

• The order of items: alphabetical or by number of instances.

• A list of classes or namespaces to omit.

According to these parameters, this component generates the
menu applying a recursive algorithm, shown in Table 3, that
mainly performs two operations:

• Split classes with a large amount of instances in subclasses.

• Group classes with few instances in a superclass.

The algorithm starts with a Menu tree structure that initially
contains the whole hierarchy of classes and the number of
instances for each class. The first step of the algorithm is to
remove all the empty classes that have zero instances. Then,
depending on the number of intended items in the final menu,

i.e. parameter “numItems”, the algorithm performs mainly two
operations:

• If the number of menu items is higher than the input
parameter, the classes with fewer instances are grouped
in a new class called "Other".

• If the number of menu items is smaller than the input
parameter, the class with more instances is divided into
subclasses.

Table 3. Overview of the navigation menu generation
algorithm

generateMenu(Menu menu, int numItems)
{
 menu.removeEmpty();
 while(menu.size()>numItems)
 {
 Node other = menu.createOther();
 Node min = menu.getMinNode();
 other.mergeWith(min);
 }
 while(menu.size()<numItems)
 {
 Node max = menu.getMaxNode();
 menu.splitNode(max);
 }
}

These operations are recursively performed until the menu is
completed. Figure 3 illustrates the process of generating the
navigation menu for a subset of DBPedia, with 7 elements in the
first level. In the original hierarchy there are only 3 classes in
the first level. Therefore, there are 4 free spots in the menu. To
cover these free spots, the algorithm identifies which classes are
appropriate to divide, taking into account their number of
instances and their number of subclasses.

At first, the Eukariote class is removed and its subclasses, Plant
and Animal, move up to a higher level in the hierarchy. After
this step, the navigation menu contains 4 elements: Plant,
Animal, Bacteria and Archaea. From here, the algorithm is
applied recursively until the menu is completely generated. In
the next step, the Animal class is chosen and divided. However,
in this case, there is not space for all its subclasses in the first
level of the menu. For this reason, the subclasses with a higher
number of instances move up to the main level of the menu
while the rest of subclasses are grouped inside Other Animal.

It is important to note that the procedure depicted so far that
takes into account the whole dataset classes and instances at a
given moment and generates the corresponding menu as an
static snapshot. In order to avoid repeating the whole process
each time changes are performed on the dataset, it is possible for
Rhizomer to monitor all changes to the dataset if they are
performed through its interface and not directly on the store.

Whenever a change is detected, the records for all the involved
classes are updated accordingly. If a new instance is inserted, all
the classes it belongs to are updated and the new instances count
is increased. Conversely, if an instance is removed, the
instantiation counters for the involved classes are decreased.
Finally, if the changes involve the classes themselves, the
hierarchical structures among the class records are updated
accordingly in order to model the new shape of hierarchy of
classes.

Eukariote
143504

Species
146082

Plant
39528

Animal
96534

Bacteria
163

Archaea
164

Fish
11134

Insect
36245

Bird
12334

...

Bacteria
163

Archaea
164

Mollusca
8677

Mammal
8274

...

Fish
11134

Insect
36245

Bird
12334

Plant
39528

Other Animal
32881

Species
146082

Figure 3. Generating a navigation submenu for DBPedia

Species with 7 options (left original, right result)
This approach makes it possible to show the user the navigation
bar that best fits the data in the dataset at that particular moment.
For instance, if the dataset changes from containing mainly data
about projects to mainly about publications, the menu would
change accordingly to show more prominently the part of the
underlying ontologies about publications. More concretely,
initially the different kinds of projects were shown in the menu,
as top or second level menu options. On the other hand, at most
the option “Publication” was shown. With the data update, the
menu bar would change and show just the “Project” option but
include the main kinds of publications, especially those for
which there are more instances.

On the other hand, one possible drawback of this approach, as it
has been pointed by some usability expert evaluations, is that
users find it very disturbing that the navigation menus change
from visit to visit due to changes in the underlying data. This is
an inconvenient effect of navigation menus dynamism, as users
see them as a static part of the site and, as they get used to them,
they rely on them as a handful guide to the site.

In any case, our experiments show that these changes are only
systematic if there is very few data. Under those circumstances,
the navigation menu undergoes changes quite often when adding
new resources. However, as more resources are introduced,
changes in the navigation menu tend to be minimal and as soon
as the amount of data is statistically significant to keep the
natural tendency in the dataset evolution, the changes in the
menu bar are practically inexistent or not significant from the
point of view of the user as they only affect to particular options
in the submenus that are added or removed in the context of
more general options in the menu, that keep users in the track to
the information they need.

3.4 Facets
Users don’t always know exactly what they are looking for and,
sometimes, they don’t even know what its name is. Other times,
they are unfamiliar with the domain or they want to learn about
a topic. This is particularly true when facing Semantic Web
datasets. In these cases, exploratory search is a strategy that
allows users to refine their search by successive iterations. An

exploratory interface such as faceted browsing allows users to
find information without a priori knowledge of its schema.

With navigation menus we can make the user aware of the
hierarchical structure of a dataset but, once they choose the class
of things they are interested in, the face the barrier of not
knowing how they are described. In other words, what are the
main properties that describe them, which ones are the more
relevant for that particular kind of things, the range of values
they have in that particular case, etc.
Faceted navigation is an exploratory technique for navigating a
collection of elements in multiple ways, rather than a single and
pre-determined order. Facet browser interfaces provide a user-
friendly way to navigate through a wide range of data
collections. A faceted classification system allows contents to be
classified in multiple dimensions. These dimensions are called
facets and represent characteristics of the information elements.
For example, a collection of books can be classified using an
author facet, a subject facet, a date facet, etc. In the Semantic
Web, expressed in RDF, resources constitute the collection of
browsed elements and facets are the properties that describe
them.

Traditional facet browsers relied on manual identification of the
facets and on a previous knowledge of the target domain. In
Semantic Web it is possible to automate this process and a
semantic faceted browser should be able to handle any RDF
dataset without any configuration. Since Semantic Web
integrates data from lot of sources, we can’t assume a single
fixed schema for all data. A faceted browsing system in
Semantic Web should be scalable and generic, not depending on
a particular dataset.
In traditional Web, facet browsers are developed to navigate
through homogeneous data and facets are fixed. This conflicts
with Semantic Web, where data is too diverse to use a single set
of facets: facets that make sense for one type of resource could
be inappropriate for other types. Moreover, when new data is
added the system should be able to add new facets at run time.

One of the most important aspects of a facet browser is that,
when constraining the dataset, all properties and values that
would lead to an empty set of results need to be automatically
removed from the interface, protecting the user against dead
ends.

To build the facets, and to keep them updated, what Rhizomer
does is to perform SPARQL queries for each class in the dataset
that retrieve all the properties their instances have, the different
values each property has and the cardinality for each value, i.e.
how many times that property for that class takes that value.

Facets are pre-calculated and stored in a data structure. They are
then updated whenever the dataset is edited through Rhizomer.
They are also updated, but just a local copy associated to a user
session, when the user starts browsing and selecting values for
different facets. In this case, the set of instances used for facets
generation is constrained by the choices made so far and the
facets are recalculated for that constrained set of instances.
Those facets that are no longer relevant, i.e. no instance uses
them, are removed from the facets set. For instance, if the value
“2010” has been selected for facet “date”, and for that date there
is no instance in the dataset with the property “completedOn”,
then this facet will not be included in the set shown to the user.

When a dataset is very large and heterogeneous, the number of
facets will also be very large. Therefore, it is needed an
automated method to choose which facets are more useful and
important for the user. We need to find those facets that best
represent the dataset and those that are best to navigate the
dataset. Choosing the right facets is very important, a suitable
facet should allow efficient navigation through the dataset and
be representative for those objects.

Faceted browsing can be seen as a decision tree. A path in the
tree represents a set of constraints that select the resources of
interest. As the tree is constructed dynamically and the
information space changes, facets and their ranking need to be
recalculated at each step of the decision tree.

To measure the quality of a facet, and therefore showing it more
prominently to the user, we use three metrics:

• Predicate frequency: we are interested in those predicates
that occur frequently inside the instances being browsed.
The more resources covered by the predicate, the more
useful it is in dividing the information space. If the
predicate is not frequent it will only affect a small subset
of the collection. We compute the predicate frequency as
the number of resources for which the predicate p is
defined. We normalise this value dividing it by the total
number of resources:

freq(p) =
nr(p)

nr

1

• Predicate balance: the facet helps the user better

discriminate the set of instances being browsed when it
takes a well-balanced range of values for the facet
property. On the contrary, a facet whose property takes
always or mainly a particular value is less useful. The
same happens if each instance has a different value for the
facet property. Consequently, we will favour facets that
show behaviours in between these worst cases. To
compute the predicate balance we use the Shannon's
entropy formula:

H(S) = −
n�

i=1

p(vi)lognp(vi)

1

• Value cardinality: a suitable predicate should have a small

amount of values to choose from. If there are too many
choices it is difficult to display all the options and it might
confuse the user. We compute the value cardinality as the
number of different values for a predicate. This metric is
normalized using a function based on the Gaussian density
that can be regulated through the µ and σ parameters to
the top and bottom values of the range of different values
we are interested in. This range is still to be fixed
experimentally but existing work recommends ranges
similar to from 2 to 20 [20].

card(p) =

�
0 if no(p) ≤ 1

e−
(n0(p)−µ)2

2σ2 otherwise

1

The three metrics are combined using a weighted function that
produces a unique usefulness value for each facet. We are
currently combining them with equal weights but we plan to
explore different arrangement and test them with end-users.

Once the facets have been generated and prioritised given their
usefulness, we are currently generating a simple HTML
rendering of the facets that allow users to select individual
values or range of them in the case of numeric values. Details
about our future plans about facet rendering are available in
Section 4.

3.5 Interaction Services
Navigation menus and facets are well suited for given users an
overview of the kind of resources in a dataset and their
properties. These components are quite generic and can be
adapted to any kind of semantic data. However, they are so
generic that they might miss the particularities of a given set of
resources and how these particularities can be used to provide a
better way to build a presentation for users or let them interact.

To provide these specialised interaction services when they are
available, Rhizomer features a framework where they can be
deployed and dynamically linked to resources. The linking is
facilitated by the semantic description of the resources and also
because the interaction services are wrapped as Semantic Web
services that also feature a semantic description. Rhizomer uses
these semantic descriptions to provide a completely dynamic
integration of the interaction services because they are not
preconfigured for a given type of resources, i.e. they can be seen
as independent entities.

In order to reduce coupling, the semantic description of the
service just needs to define the minimal restrictions on the
resources it is capable of processing. For instance, a service that
shows resources in a map is described semantically as requiring
resources that have latitude and longitude attributes, or a
geographic point property. This reduces coupling because the
service does not get tied to a particular kind of resources, as it
would happen if it was tied to resources of a particular type, e.g.
Place.
Other parts of the semantic description of these visualisation
services we have considered are the URI where it is available as
a web service, the label to be used for end-user presentation and
a characterisation of the output of the service that facilitates
integrating the results back into the user interface.

Instead of developing a custom vocabulary for these
descriptions, we have evaluated existing ones and chosen and
ontology for web services description as the source of terms for
our needs, concretely OWL-S 1.1 [21]. This was the most
appropriate vocabulary for our needs. With OWL-S it was easier
to detect the classes and properties more appropriate to the kind
of descriptions we required and to use them in isolation without
any concern about the rest of the framework. Only the Service
Profile provided by OWL-S is used for a high-level description
of the service.

In fact, only the class Process and the properties hasInput and
hasOutput (defined in OWL-S) are used. Process allows
identifying the resources that correspond to interaction services
and the resource URI corresponds to where the web service is
available.

The hasInput property is associated to Process resources and is
used to characterise the resources that can serve as input for the
interaction service. Here, we have explored two options. The
first one is to make hasInput point to an OWL class that states
the necessary and suficient conditions to be fulfilled by the
resources that constitute service input. Consequently, for an

interaction service to be available for a resource, this resource
must belong to the class defined as the input of the service.

For instance, as it is shown in Table 4, it is possible to define
GeolocatedEntity as the class of all the resources with properties
lat and long and use it as the hasInput class for a service named
“map”. There is no need to explicitly classify all the geolocated
entities into this class. An OWL DL reasoner is responsible for
classifying into it all the resources that satisfy these restrictions.

Table 4. Description of a geographical information
visualization service using an OWL class

<rdf:RDF... xmlns:process="…/services/owl-s/1.1/Process.owl#"
 xmlns:pos="…w3.org/2003/01/geo/wgs84_pos#">
<process:Process
 rdf:about="http://rhizomik.net/rhizomer/services/map">
 <rdfs:label>map</rdfs:label>
 <process:hasInput>
 <owl:Class rdf:ID="GeolocatedEntity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="&pos;lat"/>
 <owl:minCardinality>1</owl:minCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&pos;long"/>
 <owl:minCardinality>1</owl:minCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </process:hasInput>
 <process:hasOutput>text/html</process:hasOutput>
</process:Process></rdf:RDF>

The drawback of using OWL classes to characterise the input of
the interaction services is that, in order to decouple services
from resources, it is necessary to use OWL classes with the
necessary and suficient conditions and OWL reasoner is
required to infer the association. This is not feasible for many
datasets due to scalability issues.

An alternative is to use SPARQL queries as the way to
characterise the resources that might serve as input for a given
interaction service. In this case, hasInput instead of pointing to
an OWL class definition points to and ASK SPARQL query like
it is shown in Table 5. This kind of queries return true if there is
a data being queried satisfies all the restrictions posed by the
query. The result is false otherwise.

Table 5. Description of a geographical information
visualization service using a SPARQL query

<rdf:RDF... xmlns:pos="…w3.org/2003/01/geo/wgs84_pos#">
<process:Process
 rdf:about="http://rhizomik.net/rhizomer/services/map">
 <rdfs:label>map</rdfs:label>
 <process:hasInput>
 ASK WHERE { ?r pos:lat ?lat; pos:long ?long }
 </process:hasInput>
 <process:hasOutput>text/html</process:hasOutput>
</process:Process></rdf:RDF>

The approach is to perform the ASK queries for the interaction
services under consideration over each one of the resources the
user is interested in. If the ASK query returns true, then it is
possible to fetch the resource and its description to the
interaction service. Once the mechanism to dynamically
associate the interaction services and the resources described by
a dataset is in place, it is time to define how the interaction

services are offered to the user. We currently consider two
situations.

First of all, there might be interaction services that are the best
choice for users when interacting with resources of a given kind
or that feature some particular properties, e.g. resource of type
Picture or with properties lat and long. In this cases, the services
are marked as default and whenever a user navigates to a
resource for which such a default service exists, the service is
used to generate the visualisation of the resource instead of the
visualisation for generic data browsing presented in Section 3.1.

The second way to offer an interaction service to users is when
the service is not considered the best choice but just an
alternative way. In this case, while the is viewing a given
resource using the generic browsing mechanism or another
interaction service, the alternative interaction services are shown
to the user as links the user can activate in order to use the
corresponding service to interact with the resource. For instance,
in the resource labelled “Lleida” features latitude and longitude
so the “Map” interaction service is offered as an alternative way
to interact with the resource.

Figure 4. Generic view of a resource with latitude and
longitude with a “Map” alternative interaction service

It is important to note that the same interaction service might be
the default for some resources and alternative for others.
Consequently, we have introduced a new property called
hasInputDefault that specifies the resources for which the
service is the default while the original hasInput is kept for the
resources for which it is alternative. In both cases, the
cardinality might be greater than one if more than one OWL
class or SPARQL query is necessary to specify the resources the
interaction service applies to. Alternatively, just one OWL class
or the SPARQL query might be defined combining different
patterns for the different kinds of resources, e.g. using the
UNION clause to combine the patterns in the case of SPARQL
queries.

It is important to note that we have not considered any particular
property for the service description that specifies the input
parameters for the service, e.g. a “lat” and “long” parameters in
the case of the “Map” service. Instead, we consider that all
services receive the input via a POST message and that the
payload of the message is the RDF/XML serialisation of the
description of the resource (or resources) that the service
receives as input.
This approach reduces the coupling between services and
resources and makes it possible for the interaction services to
benefit from the additional properties in the resource

description. For instance, the service might use the available
labels in order to build a more appealing visualisation for users
that avoids showing them URIs and complement it with
descriptions, abstracts, etc.

The drawback of this approach is that the direct invocation of
web services passing them RDF metadata as input is not
common. Therefore, in many cases, the URI associated with a
service is actually pointing to a wrapper that receives the RDF,
extracts the data needed by the service, and makes the “real”
invocation of the service. This additional layer between
Rhizomer and the services, though it complicates the
implementation, allows using visualisation services such as
GoogleMaps or SIMILE Timeline8 that are only available as
JavaScript libraries. In this case the wrapper is implemented as a
servlet that generates the web page that uses the JavaScript
library and provides the final result.

Finally, the hasOutput property specifies the output type of the
service, i.e. the MIME type of the output. The output is shown in
a new HTML layer within the Rhizomer interface and the
MIME type is used to correctly interpreting the result.

3.6 Data Edition
One additional feature that has been added to Rhizomer is the
possibility of directly editing the data through the Rhizomer
interface. This has been identified as a valuable feature because
all the information architecture components described so far, in
addition to improve the awareness of the structure of the dataset,
also make errors in the data more evident.

This likely produces that the user perceives the dataset as less
valuable and the objective is to make these small editions to
correct errors observed in the data while browsing easy to fix.

Currently, this feature is limited to authorised users but the
objective is to make it open to all users and incorporate the trust
management mechanism that facilitate integrating the proposed
changes in a controlled way.

Consequently, the target user is a non-expert end-user and the
kind of editions supported are small changes or the creation of
new data based on the existing one. It is not intended as an
ontology editor like Protégé [22]. We profit from this setting and
take into account usability evaluation outcomes, like those
reported in [23] for Linked Data authoring tools.

Edition is implemented through HTML forms with
autocomplete that assist the user during the edition process.
Properties and values are recommended taking into account
what the user types and the data and ontologies in the dataset.
The approach for fragmenting the graph while browsing based
on CBD plus labels, presented in Section 3.1, besides being the
foundation for browsing, allows constraining the metadata
editing and deletion actions to a limited set of triples. This way,
it is possible to implement editing actions as the replacement of
a given fragment with the one resulting from the editing process.
The same strategy applies for the deletion action.

All these operations are also carried out through an HTML
interface. In addition to the RDF to HTML transformation, the
Rhizomer platform includes an XSL transformation from RDF
to HTML forms. These forms are generated automatically from
the RDF/XML corresponding to a fragment.

8 Simile Timeline, http://simile.mit.edu/timeline

This transformation, instead of generating text values and links
for literals and resource, generates input fields for each triple.
The field is named using the corresponding property URI and its
value corresponds to the triple value. The fields can be used in
order to edit the property value, either a resource URIs or a
literal. Moreover, properties and values can be removed or
added.

The user is assisted during the editing process using an
autocomplete feature. Basically, when the user chooses to add a
new property, a SPARQL query is used in order to retrieve all
the “recommended” properties for the resource being edited
whose label or part of the URI start with the text typed so fa by
the user.

These come out the set of properties not constrained to a
particular resource type, i.e. no domain restriction, plus those
constrained to the types of the resource being edited, i.e. those
whose domain is one of the type of the resource being edited or
those the resource is instance of an OWL Restriction on the
property.
The SPARQL queries to do this are the same than when building
a search form for a given resource type like described in Section
3.1. The only addition is the additional filters on the label of the
property or its URI containing the chars typed so far by the user
in the input field, and from which the autocomplete is
performed.

The properties specific of a given class are retrieved using the
query at Table 1 and the generic properties, applicable to any
kind of resource, with the query at Table 2. The later are just
retrieved once per user session and cached because it is the same
set for all resources. It is important to note that in this case, we
combine the properties for all the classes the edited resource is
an instance of.

Once the user has added a new property, or if the value of an
existing property is being edited, Rhizomer also provides
assistance while defining property values that are not literals. In
this case, the extra guidance is provided by the range of the
property whose value is being edited. If the range is a literal, the
user can type freely the property value. If it is a range, then the
value is an instance of the range class.

Here the term “range” generalises both the rdfs:range of the
property but also the constraint that an OWL Restriction puts on
the values of a property in the context of a class the edited
resource instantiates. This constraint is defined by an
owl:allValueFrom or owl:someValuesFrom OWL primitive
which points to a class that values of the property respectively
should or might instantiate.

Consequently, the autocomplete feature for property values is
implemented using SPARQL queries against all the resources in
the repository whose label or URI contains the text typed by the
user so far. Moreover, those resources should be instances of the
ranges of the property whose value is being edited.

However, the user might type something and there might not be
anything in the dataset with that label or URI. In this case, the
outcome is that a new resource is created. The resource is type
with the “range” of the property and labelled with the string
typed by the user. From this point, the user can start adding new
properties to the new resource.

Finally, an algorithm has been developed in order to reverse the
mapping from RDF to HTML forms. In other words, this

algorithm is responsible for generating the RDF that results from
the editing process by mapping the form input fields to the
corresponding RDF triples.

There is an input field, generated during the RDF to HTML
form step, which stores the URI of the resource being edited.
This one becomes the subject for all the RDF triples generated
from that form. The input field identifiers and their fillers
become the subjects and objects for that triples describing the
subject resource. Fig. 1 shows a graphical representation of the
whole edition process.

view, RDF2HTML XSLT

edit, RDF2HTMLForm XSLT

swrc:SoftwareProjecttype

type

homepage

label Rhizomer

http://rhizomik.net/rhizomer

swrc:ResearchProject

Cancel

+

Add property

http://rhizomik.net/rhizomer

edit – del – new

Change

Rhizomer a SoftwareProject,
Research Project

homepage http://rhizomik.net/rhizomer
label Rhizomer

<swrc:SoftwareProject rdf:about=”http://rhizomik.net/rhizomer”>
 <rdf:type rdf:resource=”&swrc;ResearchProject”/>
 <rdfs:label>Rhizomer</rdfs:label>
 <swrc:homepage>http://rhizomik.net/rhizomer</swrc:homepage>
</swrc:SoftwareProject>

PUT

Fig. 1. Transformation from RDF to HTML form and back
to edited RDF

4. CONCLUSIONS AND FUTURE WORK
As it has been shown, Rhizomer implements a set of features
that make it possible to deploy it on top of any dataset based on
Semantic Web technologies and publish it, while facilitating
user awareness of what is in there. This awareness is
accomplished by components borrowed from the Information
Architecture discipline. Concretely, navigation bars, which show
the main kinds of resources in the dataset, and facets, that show
the more significant properties for different kinds of resources
and their values. Moreover, it is possible to deploy Semantic
Web services that provide specialised ways to interact with the
data and analyse it. We even provide an interaction service that
allows performing simple edition of the data using autocomplete
forms guided by the ontologies used in the dataset and the
available resources.

Our preliminary tests with users show that Rhizomer facilitates
publishing and browsing a dataset, like many other similar tools,
but also allows that users realise what is the value of the dataset
in the context of their particular needs. It has also shown its
scalability from small datasets like the one for the Rhizomik
initiative9 to really big ones like the whole DBPedia10, both
datasets can be accessed online through Rhizomer at the
provided URIs.
The user tests are currently just preliminary qualitative
evaluations of the resulting information architecture. We will
start a quantitative evaluation when we finish developing a

9 http://rhizomik.net
10 http://rhizomik.net/dbpedia

reference IA we can compare to. We are currently developing an
IA following “traditional” techniques for the DBPedia dataset.

The main technique is Cardsorting [3], which is based on
providing to some test users a set of cards that they then
organise, independently, into groups of cards they find strongly
connected. These groups are then used when building the
navigation bar menus. In order to develop a comparable
information architecture, the cardsorting is being conducted on
the set of cards corresponding to the top levels of the DBPedia
Ontology.

Other areas of future work are related with facets and interaction
services. For facets, the objective is to generate facets
customised to the kind of values being managed, i.e. numerical
values, alphabetical values, dates, geographical points, etc. We
are also experimenting with different ways of combining the
three metrics used to rank the facets. And, it would be also
interesting to consider not only the statistical value of each facet
but also their descriptive value.

In relation with interaction services, the idea is to profit from the
easy integration of external services to explore more appropriate
interaction and design patterns together with the more useful
information visualisations that facilitate analysing
heterogeneous semantic data.
To conclude, the edition service open the door to the integration
of authentication and trust management mechanisms that allow
building reliable data curation communities around datasets
published using Rhizomer. In this case, the objective is to make
it open to all users to contribute and incorporate the trust
management mechanism that facilitate integrating the proposed
changes in a controlled way.

5. ACKNOWLEDGMENTS
The work described in this paper has been partially supported by
Spanish Ministry of Science and Innovation through the Open
Platform for Multichannel Content Distribution Management
(OMediaDis) research project (TIN2008-06228).

6. REFERENCES

 [1] http://linkeddata.org
 [2] http://www.w3.org/TR/rdf-sparql-query
 [3] Morville, P. and Rosenfeld, L. 2006. Information

Architecture for the World Wide Web. O'Reilly Media. [2] http://www.w3.org/TR/rdf-sparql-query
 [3] Morville, P. and Rosenfeld, L. 2006. Information

Architecture for the World Wide Web. O'Reilly Media.
 [4] Bojars, U., Passant, A., Giasson, F., Breslin, J. G.: “An

Architecture to Discover and Query Decentralized RDF
Data”, in : Proceedings of Workshop on Scripting for the
Semantic Web, SFSW 2007. CEUR Workshop
Proceedings, vol. 248 (2007)

 [5] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt,
Christian Herta, Scott Robinson, Michaela Bürgle, Holger
Düwiger, Ulrich Scheel: Faceted Wikipedia Search. 13th
International Conference on Business Information Systems
(BIS 2010), Berlin, Germany.

 [6] Hildebrand, M., Ossenbruggen, J., and Hardman, L. 2006.
/facet: A Browser for Heterogeneous Semantic Web
Repositories. The Semantic Web - ISWC 2006. Springer.
272-285.

 [7] Berners-Lee, T. et al. 2006. Tabulator: Exploring and
Analyzing linked data on the Semantic Web. Proceedings
of the Semantic Web and User Interaction Workshop
(SWUI'06), Athens, USA.

 [8] Araujo, S., Schwabe D., Barbosa S. 2009. Experimenting
with Explorator: a Direct Manipulation Generic RDF
Browser and Querying Tool. Visual Interfaces to the Social
and the Semantic Web (VISSW 2009), Sanibel Island,
Florida.

 [9] Haase, P., Mathäß, T., Schmidt, M., Eberhart, A., Walther,
U. 2010. Semantic Technologies for Enterprise Cloud
Management. The Semantic Web – ISWC 2010. pp. 98-
113 Springer, Berlin, DE.

[10] O. Corcho, A. López-Cima, A. Gómez-Pérez. 2006. The
ODESeW 2.0 semantic web application framework.
Proceedings of the 15th International Conference on World
Wide Web, WWW '06, ACM Press, pp. 1049-1050.

[11] M. Krötzsch, D. Vrandečić, M. Völkel: “Semantic
MediaWiki”, in : Proceedings of the Int. Semantic Web
Conference, ISWC’06. LNCS Vol. 4273, 2006, pp. 935-
942.

[12] Bizer, C., Cyganiak, R. 2006. D2R Server - Publishing
Releational Databases on the Semantic Web. Poster at the
5th International Semantic Web Conference (Athens, USA,
2006).

[13] Rodriguez, J.B. and Gómez-Pérez, A. 2006. Upgrading
relational legacy data to the semantic web. Proceedings of
the 15th international conference on World Wide Web
(New York, NY, USA, 2006), 1069-1070.

[14] L. Richardson, S. Ruby: “Restful Web Services”, O'Reilly,
Cambridge, MA, 2007.

[15] Richardson, L. and Ruby, S. 2007. Restful Web Services.
O'Reilly.

[16] E. Prud'hommeaux, A. Seaborne: “SPARQL Query
Language for RDF”. Recommendation, World Wide Web
Consortium (2008). http://www.w3.org/TR/rdf-sparql-
query

[17] D. Crane, E. Pascarello, D. James: “Ajax in Action”,
Manning, Greenwich, CO, 2005.

[18] R. García, J.M. Gimeno, F. Perdrix, R. Gil, M. Oliva, J.M.
López, A. Pascual, M. Sendín: “Building a Usable and
Accessible Semantic Web Interaction Platform”, World
Wide Web, in press, 2010.

[19] Sticler, P. 2005. CBD - Concise Bounded Description.
World Wide Web Consortium.

[20] Oren, E. et al. 2006. Extending Faceted Navigation for RDF
Data. In International Semantic Web Conference (2006),
559–572.

[21] D. Martin (Ed.). 2004. OWL-S: Semantic Markup for Web
Services. W3C Member Submission.
http://www.w3.org/Submission/OWL-S

[22] Noy, N. et al. 2001. Creating Semantic Web contents with
Protege-2000. Intelligent Systems, IEEE. 16, 2 (2001), 60-
71.

[23] Davies, S., Hatfield, J., Donaher, C., Zeitz, J. 2010. User
Interface Design Considerations for Linked Data Authoring
Environments. LDOW2010, April 27, 2010, Raleigh, USA.

