
A Benchmark for End-User Structured Data User

Interfaces

Roberto Garćıaa,∗, Rosa Gila, Eirik Bakkeb, David R. Kargerb

aComputer Science and Engineering Department, Universitat de Lleida, Jaume II 69,
25001 Lleida, Spain

bComputer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar St.,
Cambridge, MA, USA

Abstract

During the years, it has been possible to assess significant improvements
in the computational efficiency of Semantic Web search and exploration sys-
tems. However, it has been much harder to assess how well different se-
mantic systems’ user interfaces help their users. One of the key factors fa-
cilitating the advancement of research in a particular field is the ability to
compare the performance of different approaches. Though there are many
such benchmarks in Semantic Web fields that have experienced significant
improvements, this is not the case for Semantic Web user interfaces for data
exploration. We propose and demonstrate the use of a benchmark for eval-
uating such user interfaces, which includes a set of typical user tasks and
a well-defined procedure for assigning a measure of performance on those
tasks to a semantic system. We have applied the benchmark to four such
systems. Moreover, all the required resources to apply the benchmark are
openly available online. We intend to initiate a community conversation that
will lead to a generally accepted framework for comparing systems and for
measuring, and thus encouraging, progress towards better semantic search
and exploration tools.

Keywords: benchmark, user experience, usability, semantic data,
exploration, relational data

∗Corresponding author
Email addresses: rgarcia@diei.udl.cat (Roberto Garćıa), rgil@diei.udl.cat

(Rosa Gil), ebakke@mit.edu (Eirik Bakke), karger@mit.edu (David R. Karger)

Preprint submitted to Journal of Web Semantics August 29, 2019

1. Introduction

The amount of semantic data is growing, through open data initiatives
like the Linked Open Data Cloud [1] or motivated by SEO benefits, like those
provided by major search engines for web pages annotated using schema.org
[2]. However, this has not noticeably impacted user applications, for instance
by the long-sought Killer App for the Semantic Web [3]. One of the main
barriers alleged when justifying the lack of the uptake of the Semantic Web
is that it has not reached end-users [4].

We might argue that this is, in fact, the desired outcome, that client
applications should hide the complexities of semantic technologies and that
the benefits should be evident just server-side. For instance, search engines
like Google provide better results thanks to semantic annotations, but users
do not get aware. This should usually be the desired outcome when trying
to satisfy specific user needs: a basic usability rule is that the user should
always be provided with the most uncomplicated user experience possible [5].

For known tasks, such as managing a music collection or an address book,
the simplest possible experience is often provided by a task-specific applica-
tion with a task-specific interface. In this case, a familiar user interface will
hide any Semantic Web nature of the underlying data. However, there will
be other cases where no common application exists to camouflage the un-
derlying Semantic Web data. A user may need to explore a data collection
that is too rarely used to have motivated an ad-hoc application or seeking
to learn something by combining multiple data collections that are not often
combined [6].

For instance, many semantic search tools must work with arbitrary schema
and cannot hard-code a particular one into their interfaces. For this task,
tech-savvy users can rely on standards like SPARQL to query available data.
However, this is beyond the capabilities of most users, and even SPARQL-
aware developers have trouble querying unfamiliar data collections [7].

Consequently, we focus on more user-friendly visual query tools. All kinds
of users can benefit from tools that make it possible to visually explore se-
mantic data, showing all its richness while providing smooth user experience.
It is in this particular scenario we might find the Semantic Web killer app
that makes all the power of Web-wide connected data available to ordinary
users, so they can even discover unforeseen connections in it.

Proposals are very disparate [8], ranging from Linked Data browsers [9]
to Controlled Natural Language query engines [10] or faceted browsers [11].

2

This heterogeneity makes it difficult to compare them, especially from the
user perspective. Therefore, a reference framework for benchmarking is re-
quired, as discussions in this research domain have already highlighted [12].

Moreover, it has also been shown that benchmarks help to organize and
strengthen research efforts in a particular research area [13]. An example is
the Text REtrieval Conference (TREC) benchmarks [14], which have become
the de facto standard for evaluating any text document retrieval system.
Also, there are success stories in areas related to the Semantic Web like
ontology alignment [15, 16].

In the context of semantic data exploration, and thus not including Ques-
tion Answering [12], there have been just a few efforts and based on quite
informal criteria, like the Intelligent Exploration of Semantic Data Chal-
lenge1. Thus, none of them targets the general user task of semantic data
exploration, nor provides a complete benchmark that facilitates compara-
bility and competition in this research topic. On the other hand, there are
many benchmarks for performance evaluation from a system perspective, like
the Berlin SPARQL Benchmark (BSBM) [17] to evaluate SPARQL query en-
gines, but they do not take into account the end-user perspective.

In this paper, we present a benchmark for semantic data (graphical) user
interfaces with a set of user tasks to be completed and metrics to measure
the performance of the analyzed interfaces at different levels of granularity.
Evaluations based on this benchmark do not require real-users interacting
with the application, just experts measuring the number of interactions re-
quired to complete each user task. This approach largely reduces the cost of
user interface evaluation and produces more objective results that facilitate
comparing different user interfaces.

Moreover, we provide a benchmark not just for Semantic Web data explo-
ration, but for structured data more generally. This makes it possible to also
compare tools available in more mature domains like relational databases
[18]. We also hope to further motivate research in semantic data exploration
that goes beyond what is possible with other less rich data models.

In Section 2, we present our approach to providing a benchmark for struc-
tured data exploration. Then, in Section 3, we present the benchmark, which
was initially put into practice with a couple of faceted browsers, Virtuoso and
Rhizomer, as detailed in an earlier publication [19]. In Section 4, this ini-

1IESD Challenge, https://iesd2015.wordpress.com/iesd-challenge-2015

3

https://iesd2015.wordpress.com/iesd-challenge-2015

tial experiment is extended with two additional tools, which now include
a tool for relational databases exploration, Sieuferd. This allows a much
more sophisticated illustration of the benchmark in action, together with its
possibilities and the insights it makes possible by comparing such disparate
tools. Conclusions in this regard are presented in Section 5 and future work
in Section 6.

2. Approach

To define the benchmark, we first choose the tasks that will be bench-
marked. Second, we decide what to measure about the systems as they are
used for the chosen tasks. In both parts, our choices influence the fidelity
of our benchmark. First, our chosen tasks should be representative of the
tasks we expect users to perform. They should cover the common cases, and
be neither too hard nor too easy. Second, our performance metrics should
provide some suggestion of what real users will experience using the system.
At the same time, they will be easier to adopt if at least some measurement
can be done analytically, without actual expensive user studies.

These two choices are the ”axioms” of our benchmark system; they cannot
be proven correct but must instead be justified by experience and argumen-
tation. We will discuss both in detail in the following two sections. For
tasks we begin with (then augment) the Berlin SPARQL Benchmark, a set
of queries initially intended to serve as a benchmark of computational per-
formance. Our performance measure considers basic user operations such as
mouse movements and keyboard clicks under the so-called Keystroke Level
Model [20] of user interaction.

In choosing tasks, we want to avoid introducing bias from an a priori
conception of the problem or experience developing our own tools. Conse-
quently, we have looked outward to find sets of typical end-user tasks related
to structured data exploration.

Although our main interest is semantic technologies, we prefer a bench-
mark that can also be applied to relational database tools, so we can compare
them with semantic tools and highlight the pros and cons between them. Vi-
sual query tools will insulate the user from details of the underlying storage
representation, meaning RDF or relational databases could equally be used
as back-ends.

From existing benchmarks with user tasks, a clear candidate emerged:
the Berlin SPARQL Benchmark (BSBM). Although this benchmark is in-

4

tended for measuring the computational performance of semantic and rela-
tional database query engines, it is based on a set of realistic queries inspired
by common information needs in these domains. We can, therefore, lever-
age the same queries to measure the user interaction performance of visual
query systems. Moreover, BSBM is based on a synthetic dataset generated
by a tool given a target dataset size and output format, SQL or RDF, which
facilitates the distribution of the benchmark.

All the user tasks are accompanied by both the SPARQL and SQL query
to satisfy them. From the perspective of a user experience benchmark, these
queries are technological details that might not be relevant because users
can satisfy the tasks by generating different queries. However, they might be
helpful to verify the outcomes of users’ tasks and check they are getting the
intended result.

Therefore, we adopted the proposed user tasks that motivate the actual
SPARQL and SQL queries that conform the Berlin SPARQL Benchmark.
The tasks are contextualized in an e-commerce scenario, where different ven-
dors offer a set of products and different consumers have posted reviews
about these products.

There are three different sets of tasks in the BSBM, depending on task
types. The BSBM Explore set of tasks are directly connected to the proposed
benchmark aim. There is a second set of Business Intelligence tasks, which
are too complex to be considered in the context of data exploration tasks for
the moment. Finally, there are Update tasks, which in the future, we hope to
use to define a benchmark for users editing, rather than searching semantic
data.

Consequently, the data exploration tasks in BSBM have been used as the
starting point for the proposed structured data exploration benchmark from
a user experience perspective. These are 12 tasks that illustrate the user
experience of a user looking for a product. The tasks are presented in the
following subsection.

Note that our goal is not to evaluate e-commerce tools specifically. The
intended targets are exploration tools for arbitrary structured data, so they
cannot have any e-commerce features hardcoded into them. However, e-
commerce provides a convenient and intuitive domain in which to define
queries we expect users to want to carry out. We are interested in gen-
eral operations, such as combining two constraints, but for concreteness, we
provide tasks in our benchmark in e-commerce language.

Our benchmark does not aim to assess discoverability/learnability. We

5

posit a user who is already familiar with the tool being evaluated who knows
where to access available operations and how to invoke them. To conclude
this section, and before starting to describe each task in detail, it is important
to note that the SPARQL and SQL queries associated to each task are not
included in this paper due to space constraints but are available from the
benchmark repository2.

3. Structured Data Exploration Benchmark

The proposed benchmark currently consists of 12 end-user tasks to be
completed with the evaluated tool, listed in Section 3.1. For each task we
detail the information need and provide some context. Then, we give a
sample query based on the sample dataset accompanying the benchmark
together with the expected outcome.

The proposed benchmark also includes a set of metrics to measure the
effectiveness and efficiency of the evaluated tool when performing each of the
proposed tasks. These metrics yield numbers that can be used to compare
the performance of structured data exploration tools, as detailed in Section
3.2.

3.1. End-User Tasks

The following subsections introduce each of the 12 end-user tasks. All
but one of them are directly adopted from the Berlin SPARQL Benchmark
(BSBM). One additional task, Task 2, has been added as a variation of Task
1 to cover a gap in the original benchmark (OR versus AND operations for
combining subqueries. Full details are available from the benchmark site3.

Although the BSBM presents a particular e-commerce schema, we hold
that a true semantic web query tool cannot make assumptions about the
schema of the data it is to query. It should operate equally well on any
data schema it encounters. A tool that hardwires the BSBM schema into its
interface will be useless on a different data set and thus is not a true semantic
web tool. The BSBM instantiates one arbitrary schema to let us talk about
our queries concretely, but the tool being analyzed should not be permitted
advance knowledge of this particular instantiation.

2BESDUI, http://w3id.org/BESDUI
3https://github.com/rhizomik/BESDUI/tree/master/Benchmark

6

http://w3id.org/BESDUI
https://github.com/rhizomik/BESDUI/tree/master/Benchmark

Task 1. Find products for a given set of combined features:
A consumer seeks a product that present a specific set of features. The
corresponding information need for the benchmark dataset specifies a product
type from the product hierarchy (one level above leaf level), two different
product features that correspond to the chosen product type and that should
be present simultaneously and a number between 1 and 500 for a numeric
property. For instance:

“Look for products of type sheeny with product features strobo-
scopes AND gadgeteers, and a productPropertyNumeric1
greater than 450”.

For the previous query, and considering the sample BSBM 1000 Products
dataset4, the product labels the user should obtain are:

“auditoriums reducing pappies” and “driveled”.

Task 2. Find products for a given set of alternative features:
A consumer is seeking a product with a general idea about some alternative
features of what he wants. This task has been added beyond those provided
by BSBM. It makes Task 1 to less specific by considering feature alternatives;
the user is interested in any product that presents at least one of them. This
benchmarks how exploration tools lets users define OR operations. A sample
query for this task might be:

“List products of type sheeny with product features stroboscopes
OR gadgeteers, and a productPropertyNumeric1 greater
than 450”.

For the previous query, and considering the sample dataset, the product
labels the user should obtain if restricted to the first 5 ordered alphabetically
are:

“aliter tiredest”, “auditoriums reducing pappies”, “boozed”, “by-
play”, “closely jerries”.

4urlhttps://github.com/rhizomik/BESDUI/blob/master/Datasets/bsbm-
1000products.ttl.tgz

7

Task 3. Retrieve basic information about a specific product for
display purposes:
The consumer wants to view basic information about a specific product. For
instance:

“Get details about product boozed”.

From the entry page, and considering the synthetic dataset generated
using the BSMB tool, the response should include the following properties
for the selected product with their corresponding values, which are omitted
due to space restrictions but avail-able from the benchmark repository5:

“label”, “comment”, “producer”, “productFeature”, “propertyTex-
tual1”, “propertyTextual2”, “propertyTextual3”, “propertyNumeric1”,
“propertyNu-meric2”, “propertyTextual4”, “propertyTextual5”, “prop-
ertyNumeric4”.

Task 4. Find products having some specific features and not having
one feature:
After looking at information about some products, the consumer has a more
specific idea what she wants, features the products should have and others
that should not. The main feature of this task is the use of negation. A
sample query for this task is:

“Look for products of type sheeny with product features strobo-
scopes but NOT gadgeteers, and productPropertyNumeric1
value greater than 300 and productPropertyNumeric3 smaller
than 400”.

For this query and the BSBM 1000 dataset, the the user should obtain:

“boozed”, “elatedly fidelis release” and “learnable onomatopoe-
ically”.

Task 5. Find products matching two different sets of features:
After looking at information about some products, the consumer has a more
specific idea what he wants. Therefore, he asks for products matching either
one set of features or another set. The complexity in this case is the union
of the sets of products selected by two different patterns. For instance:

5https://github.com/rhizomik/BESDUI/blob/master/Benchmarks/3.md

8

https://github.com/rhizomik/BESDUI/blob/master/Benchmarks/3.md

“Look for products of type sheeny with product features stro-
boscopes and gadgeteers and a productPropertyNumeric1
value greater than 300 plus those of the same product type with
product features stroboscopes and rotifers and a product-
PropertyNumeric2 greater than 400”.

For the previous query, and the sample dataset, the product labels the
user should obtain if restricted to the first 5 ordered alphabetically are:

“auditoriums reducing pappies”, “boozed”, “driveled”, “elatedly
fidelis release”, “zellations”.

Task 6. Find product that are similar to a given product:
The consumer has found a product that fulfills his requirements. She now
wants to find products with similar features. The corresponding query starts
from a product and looks for all other products with at least one common
feature and a wider range of values for two of its numeric properties. For
instance:

“Look for products similar to boozed, with at least one feature
in common, and a productPropertyNumeric1 value between
427 and 627 and a productPropertyNumeric2 value between
595 and 895 (150 more or less than its value for boozed, 745)”.

For the previous query, and considering the sample dataset, the product
labels the user should obtain if restricted to the first 5 ordered alphabetically
are:

“debouches orangs unethically”, “dirk professionalize”, “grappled”,
“im-posed”, “pepperiness gothically shiner”.

Task 7. Find products having a name that contains some text:
The consumer remembers parts of a product name from former searches. She
wants to find the product again by searching for the parts of the name that
she remembers. The corresponding query is just one of the words from the
list of words6 that were used during dataset generation by the BSBM Data
Generator7. For instance:

6https://github.com/rhizomik/BESDUI/blob/master/Datasets/titlewords.txt
7http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator

9

https://github.com/rhizomik/BESDUI/blob/master/Datasets/titlewords.txt
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator

“Search products whose name contains ales”.

For the previous query, and considering the sample dataset, the product
labels the user should obtain if restricted to the first 5 ordered alphabetically
are:

“cogitations centralest recasting”, “overapprehensively dales vent-
less”, “skidooed finales noisemaker” and “unwed convalescents”.

Task 8. Retrieve in-depth information about a specific product
including offers and reviews:
The consumer has found a product which fulfills his requirements. Now he
wants in-depth information about this product including offers from German
vendors and product reviews if existent. The corresponding query refers to a
selected product and defines a current date within the ”valid from” and ”valid
to” range of the offers. Compared to previous tasks, this one introduces being
able to pose restrictions to different model entities that are interrelated, in
this case vendors and reviews that are interrelated with products and offers.
For instance:

“For the product waterskiing sharpness horseshoes list de-
tails for all its offers by German vendors and still valid by 2008-
05-28 plus details for all reviews for this product, including val-
ues for rating1 and rating2 if available”.

Considering the benchmark sample dataset, the user should get access to
the details about the following offers and reviews:

“Offer10801”, “Offer5335”, “Offer10597”, “Review5481”, “Re-
view7546”, “Review2669”, “Review5731”, “Review8494”.

Task 9. Give me recent reviews in English for a specific product:
The consumer wants to read the 20 most recent English language reviews
about a specific product. The corresponding query refers to a selected prod-
uct. This task required being able to filter literals language and ordering by
date. For instance:

“For the product waterskiing sharpness horseshoes list the
20 more recent reviews in English”.

10

Given the sample dataset, the user should obtain the details for the fol-
lowing reviews in the order they are listed:

“Review5481”, “Review8494” and “Review2669”.

Task 10. Get Information about a reviewer:
In order to decide whether to trust a review, the consumer asks for any kind
of information that is available about the reviewer. The corresponding query
refers to a selected product. This tasks explore how easy it is to reach the
information about a resource from a related one. For instance:

“Get all available information about Reviewer11”.

For the sample dataset, the user obtains all the details about the following
reviewer:

“Reviewer1”.

Task 11. Get offers for a given product which fulfill specific re-
quirements:
The consumer wants to buy from a vendor in the United States that is able
to deliver within 3 days and is looking for the cheapest offer that fulfills these
requirements. The corresponding query refers to a selected product and de-
fines a current date within the ”valid from” and ”valid to” range of the offers.
For instance:

“Look for the cheapest and still valid by 2008-06-01 offer for the
product water-skiing sharpness horseshoes by a US vendor
that is able to deliver within 3 days”.

Considering the sample dataset, the user interface should get as a response
the following offers:

“Offer3499”, “Offer11865” and “Offer15103”.

Task 12. Export the chosen offer into another information system
which uses a different schema:
After deciding on a specific offer, the consumer wants to save information
about this offer on his local machine using a different schema. The corre-
sponding query refers to a selected offer, or the one considered by the previous
task.

11

“Save in the local computer the information about the vendor
for Offer3499, this is half the task. To complete it, restrict the
output to just label, homepage and country and map them to
schema.org terms: name, url and nationality”.

3.2. Metrics

Our benchmark gives a number of generic yet typical information-seeking
tasks to be measured. We now ask the following three increasingly detailed
questions to measure the effectiveness and efficiency of the tool on these tasks.
Additionally, there is a combined effectiveness/efficiency fourth metric:

1. Capability (effectiveness). Is performing a task possible with the given
system?
For individual tasks, the values are 0 if not possible or 1 otherwise. How-
ever, some tasks are divided into subtasks and state other potential values.
For instance, 0.5 if just the first subtask of Task 12 is completed. Usu-
ally, this metric is displayed as a percentage, thus 0%...100%. For a
given task, the Capability (C) is computed as:

CTaski =


1 if task completed in whole

(0, 1) if task partially completed, e.g. 0.5 if just half

0 otherwise

For the whole benchmark, it is the percentage of all 12 tasks completed
and computed as:

C =

∑12
i=1CTaski

12

2. Operator Count (efficiency). How many basic interaction steps (mouse
clicks, keyboard entries, scrolling,...) must be performed to carry out a
task?
The Operator Count (OC) for a particular task is computed as the count
of all operations performed to complete it, where what constitutes an
interaction operation (o) is detailed later in this section:

OCTaski =

{∑
[o ∈ Taski] if CTaski > 0

0 otherwise

12

For the whole benchmark, it is the mean of the Operator Counts for all
tasks that can be completed at least in part:

OC =
12∑
i=1

OCTaski/
12∑
i=1

[CTaski > 0]

3. Time (efficiency). How quickly can these interaction steps be executed
to carry out a task?
This metric is based on a function time() that maps interaction opera-
tions (o) to the amount of time required to perform it, in seconds. This
function is detailed next in this section. For a given task, the Time (T)
is computed as:

TTaski =

{∑
o∈Taski

time(o) if CTaski > 0

0 otherwise

For the whole benchmark, it is the mean of the Times for all tasks that
can be completed at least in part:

T =
12∑
i=1

TTaski/
12∑
i=1

[CTaski > 0]

4. Task Efficiency (effectiveness/efficiency): measured as a ratio of
Capability to Time in terms of “goals per minute”.
For an individual task, Task Efficiency (TE) is computed as follows (times
60 because it is measured in minutes instead of seconds):

TETaski =
CTaski

TTaski

× 60

For the whole benchmark, TE is computed as the ration between the
overall Capability (K) and the average Time of all the tasks that have
been completed at least in part, i.e. with Time greater than zero. This
way of computing TE favours more versatile tools with a higher K and
penalizes those very specialized in just a small set of tasks:

TE =
K

T
× 60

13

Presumably, a system can be judged superior to another if it can be used
to perform more of the tasks, with fewer basic steps that take less time. Our
general target is graphical user interfaces for querying structured data. For
contrast, if we consider for example a SPARQL command line, a suitably
trained user would be able to perform all benchmark tasks with just a single
primitive operation (typing the SPARQL query) in a very small amount of
time (leaving out designing and debugging the SPARQL query). But most
users don’t have the training or understanding necessary to use such a tool.
Instead, some type of GUI is the norm, and it is such systems we aim to
evaluate.

The first two questions, of Capability and Operator Count, can be an-
swered entirely analytically. They simply require identifying and counting up
the sequence of operators that complete each task. Ideally, the third question
would be answered by a timed user study. However, conducing user studies
is a very time consuming activity, especially because it involves recruiting
users. To facilitate the application of the benchmark, our proposed metric
relies on past HCI research that offers a way to answer the time question
analytically as well, by applying known, analytic timing models for primitive
actions (keyboard and mouse operations) in the identified sequence.

In particular, the Keystroke Level Model (KLM) [20] gave experimentally
derived timings for basic operations such as typing a key, pointing on the
screen with the mouse, moving hands back to the keyboard, and so forth.
Given a sequence of these basic operations, we can total up their timings to
yield an overall predicted execution time for the task. Our proposal is to
use the main interaction operators proposed by KLM and their mapping to
time to define the Operator Count and Time metrics. The first one does not
distinguish among operations so it is computed as the sum of the counts of
all operations, though we will also keep the totals per kind of KLM operators
to facilitate computing the Time metric. The considered operators and their
mappings to time in seconds used to analytically compute the Time metric
are shown in Table 1.

4. Benchmark Evaluation

To facilitate the adoption of the benchmark, and to evaluate its appli-
cability, we have tested it with three faceted browsers for semantic data:
Rhizomer [11], Virtuoso Facets [21] and PepeSearch [22]. The first two are
more sophisticated and provide features like pivoting, while the last does not

14

operator (o) operator description
time(o)
(seconds)

K Button press (including mouse’s) or keystroke
(keys, not characters, so shift-C counts as two)

0.2

P Pointing to a target on a display, e.g. with a mouse
(time differs depending on target distance and size,
but held constant for simplicity)

1.1

H Homing the hand(s) on the keyboard or other de-
vice (this includes movement between any two de-
vices)

0.4

Table 1: Interaction operators considered and their corresponding time based on the
Keystroke Level Model (KLM)

though its simplicity makes it easier for users. We have also evaluated a
very sophisticated tool not based on semantic but relational data, Sieuferd
[23]. This is a query construction tool through direct manipulation of nested
relational results.

This way we try illustrate how the benchmark works for quite different
tools and it is capable of capturing their different capabilities, ranging from
simpler tools that are more efficient but do not support all tasks to sophisti-
cated ones more effective but less efficient.

Moreover, we have set a GitHub repository for the benchmark that can be
forked to contribute results for additional tools, which can be then incorpo-
rated into the reference repository through a pull request. Additional details
about how to contribute to the benchmark are available from the repository.
For the moment, the whole set of results for Sieuferd, PepeSearch, Virtuoso
Facets and Rhizomer are available. Next, an overview of the results for the
first three tasks is included in this paper.

Task 1 Results. Find products for a given set of combined features
This task can be completed just with Virtuoso Facets and Sieuferd. Rhizomer
and PepeSearch do not support this kind of query because when defining
the values for a particular facet, like ”stroboscopes” and ”gadgeteers” for
”feature”, it is not possible to specify that both should be available for the
same product simultaneously. The Capability metric value is then 0% for
both, as shown in Table 3.

Sieuferd and Virtuoso can complete this task and the outcome is the
expected considering the sample dataset, the products “driveled” and “au-

15

ditoriums reducing pappies”, as it is shown for Virtuoso in Figure 1. To
complete this task with Virtuoso, the interaction steps and corresponding
KLM Operators are listed in Table 2, while those required to complete the
task using Sieufred are available from the benchmark repository8. The met-
rics for all four tools are shown in Table 3. As it can be observed, Virtuoso
needs less KLM operators to complete the tasks. The required time is also
smaller, computed using the mappings from KLM operators to time available
in Table 1:

Virtuoso TTask1 : 28× 0.2 + 18× 1.1 + 5× 0.4 = 27.4

This makes Virtuoso slightly more efficient than Sieuferd, also regard-
ing the Task Efficiency metric as both tools attain the same Capacity, 2.2
completed Task1 per minute for Virtuoso and 2.0 for Sieuferd, while Task
Efficiency is 0 for Rhizomer and PepeSearch.

Figure 1: Using Virtuoso Facets to complete Task 1

8https://github.com/rhizomik/BESDUI/tree/master/Results/Sieuferd#

results-per-task

16

https://github.com/rhizomik/BESDUI/tree/master/Results/Sieuferd#results-per-task
https://github.com/rhizomik/BESDUI/tree/master/Results/Sieuferd#results-per-task

Type “sheeny” and “Enter”, then click “ProductType10”. 9K, 2P, 3H
Click “Go” for “Start New Facet” , then click “Options”. 2K, 2P
For “Interence Rule” Click and Select rules graph then “Apply”. 2K, 2P
Click “Attributes” , then “productFeature” and “stroboscopes”. 3K, 3P
Click “Attributes” , then “productFeature” and “gadgeteers”. 3K, 3P
Click “Attributes” and “productPropertyNumeric1”. 2K, 2P
Click “Add condition: None” and select “>”. 2K, 2P
Type “450” and click “Set Condition”. 5K, 2P, 2H

Total 28K, 18P, 5H

Table 2: Interaction steps and corresponding KLM operators to complete Task 1 using
Virtuoso

CTask1 OCTask1 TTask1 TETask1

Rhizomer 0% - - 0

Virtuoso
Facets

100%
51

(28K, 18P, 5H)
27.4 2.2

Sieuferd 100%
67

(47K, 19P, 1H)
30.7 2.0

PepeSearch 0% - - 0

Table 3: BESDUI metrics for Task 1 (best results in bold)

Task 2 Results. Find products for a given set of alternative fea-
tures
Rhizomer, as shown in Figure 4, supports this task because its facets can be
used to select more than one of their values as alternatives, as illustrated in
Table 2 where the interaction steps and KLM Operators required to com-
plete this tasks using Rhizomer are presented. Virtuoso Facets and Sieufred
can also complete this task, but not PepeSearch. The interaction steps re-
quired to complete the task using Virtuoso are available from the benchmark
repository9, just like those for Sieufred.

The metrics for all four tools are presented in Table 5. In this case Rhi-
zomer is the more efficient tool in terms of operations and time to complete
the task, just 12 seconds. The same holds for Task Efficiency, with 5 Task2

9https://github.com/rhizomik/BESDUI/tree/master/Results/Virtuoso#

results-per-task

17

https://github.com/rhizomik/BESDUI/tree/master/Results/Virtuoso#results-per-task
https://github.com/rhizomik/BESDUI/tree/master/Results/Virtuoso#results-per-task

per minute for Rhizomer. On the other hand, Virtuoso and Sieuferd have
almost identical efficiency metrics for this task.

Figure 2: Using Rhizomer to complete Task 2

Task 3 Results. Retrieve basic information about a specific prod-
uct for display purposes
All tools, including PepeSearch as shown in Figure 3, support this task.
The interaction steps and KLM Operators followed with PepeSearch are pre-
sented in Table 6. The interaction steps required to complete the task using
Rhizomer are available from the benchmark repository10, just like those for
Sieufred and Virtuoso.

The metrics for all four tools are presented in Table 7. They show that
Rhizomer is the most efficient tool and that, though Virtuoso requires more

10https://github.com/rhizomik/BESDUI/tree/master/Results/Rhizomer#

results-per-task

18

https://github.com/rhizomik/BESDUI/tree/master/Results/Rhizomer#results-per-task
https://github.com/rhizomik/BESDUI/tree/master/Results/Rhizomer#results-per-task

Click menu ProductType and then Sheeny submenu. 2K, 2P, 1H
Click Show values for facet Product Feature. 1K, 1P
Click facet value stroboscopes. 1K, 1P
Type in input Search Product Feature gad.... 4K, 1P, 1H
Select gadgeteers from autocomplete. 1K, 1P, 1H
Set left side of Product Property Numeric1slider to 450. 1K, 2P

Total 10K, 8P, 3H

Table 4: Interaction steps and corresponding KLM operators to complete Task 2 using
Rhizomer

CTask2 OCTask2 TTask2 TETask2

Rhizomer 100%
21

(10K, 8P, 3H)
12.0 5.0

Virtuoso
Facets

100%
53

(29K, 19P, 5H)
28.7 2.1

Sieuferd 100%
67

(38K, 19P, 1H)
28.9 2.1

PepeSearch 0% - - 0

Table 5: BESDUI metrics for Task 2 (best results in bold)

operators than PepeSearch, it is more time efficient. This is because it re-
quires less Pointing (P) operators, the most time-expensive one. Observing
the interaction steps and operators, it can be observed that PepeSearch is
being penalized by the fact that there is not a global search form, like in the
case of Rhizomer or Virtuoso, and the user needs to get first to the “Product”
type before being able to search for the one labelled “boozed”. It can be also
observed that, though both feature a global search form, Rhizomer is more
efficient than Virtuoso thanks to its autocomplete feature.

Select ”Product” in the list of concepts 1K, 1P, 1H
Click on the product label field and type ”bo” 3K, 1P, 1H
Select boozed from autocomplete 2K
Click on the product link ”boozed” 1K, 1P, 1H

Total 7K, 3P, 3H

Table 6: Interaction steps and corresponding KLM operators to complete Task 3 using
PepeSearch

19

Figure 3: Using PepeSearch to complete Task 3

20

CTask3 OCTask3 TTask3 TETask3

Rhizomer 100%
11

(6K, 2P, 3H)
4.6 13.0

Virtuoso
Facets

100%
14

(9K, 2P, 3H)
5.2 11.5

Sieuferd 100%
27

(23K, 3P, 1H)
8.3 7.2

PepeSearch 100%
13

(7K, 3P, 3H)
5.9 10.2

Table 7: BESDUI metrics for Task 3 (best results in bold)

Task 4 Results. Find products having some specific features and
not having one feature
Just with Sieuferd, shown in Figure 4, a user is capable of completing this
task. The interaction steps and KLM Operators followed with Sieuferd are
presented in Table 8. The rest of the tools do not offer a mechanism for
users to specify that there are certain product features that should not be
present. Consequently, the user cannot build the proper underlying query to
retrieve the expected products. The Capacity is then 0% except for Sieuferd,
as shown together with the rest of metrics for this task in Table 9.

4.1. Overall Results

The detailed outcomes for the rest of the tasks are not included in this
paper to keep it focused. After illustrating how the 4 first tasks have been
completed, each one with one of the 4 tools evaluated, the mechanics of the
benchmark are already clear. In any case, the results for all four tools and
the 12 taks are available from the benchmark repository11.

Now, from the results obtained for each task, it is possible to compute the
metrics for the whole benchmark as it was detailed in Section 3.2. Table 10
presents the values for the whole benchmark for all tools, which are discussed
next in the paper conclusions, Section 5.

5. Conclusions

As already shown in other research domains and discussed in Section 1,
the existence of benchmarks that facilitate comparing contributions related

11http://w3id.org/BESDUI

21

http://w3id.org/BESDUI

Figure 4: Components of the Sieuferd user interface.

to a specific research challenge helps foster efforts in that particular domain
and clarify the scope of the contributions. In the domain of semantic data
exploration, there are many proposed tools and surveys but there is not a
benchmark to easily and objectively compare them from a user experience
perspective.

Our proposal is based on a set of user tasks, most of them borrowed
from the Berlin SPARQL Benchmark (BSBM), to be completed using the
evaluated tools. Though these tasks are originally conceived to test SPARQL
engines’ performance, they are very well contextualized in the e-commerce
domain, cover a wide range of information needs and are accompanied by a
synthetic dataset generator that facilitates the distribution of the benchmark
and its deployment.

Though the dataset is synthetic and, for instance, many resources present
funny names like ”waterskiing sharpness horseshoes”, it is important to note
that this does not introduce any significant effect from the user experience
perspective when measured using the Keystroke Level Model. Moreover, it
is also important to note that, as testing with real users is very costly and
time-consuming, the benchmark is based on analytical methods and therefore
require only the involvement of a researcher experienced in semantic data

22

Create and open a perspective from the “product” table 4K, 3P
Make the “nr”, “propertyNum1”, “propertyNum3”, “product-
featureproduct.productfeature.label”, and “producttypeprod-
uct.producttype.label” fields visible

11K, 9P

Filter to show only products for which “producttypeprod-
uct.producttype.label” is “sheeny”

4K, 3P

Do a custom join operation to join in another instance of the
productfeatureproduct table

5K, 5P

Make the “productfeatureproduct2.productfeature.label” field
visible

4K, 3P

Filter for “stroboscopes” in “productfeatureproduct” 4K, 3P
Filter for “NOT gadgeteers” in “productfeatureproduct2” 5K, 4P
Insert a calculated field next to “product.label” 2K, 2P
Key the cursor to the calculated column and type the formula
“=[propertyNum1]>300 and [propertyNum3]<400” (field refer-
ences inserted by arrow key presses)

17K, 1H

Filter to show only products for which the formula is “true”
(use keyboard shortcut since hand is already on keyboard)

6K

Total 62K, 32P, 1H

Table 8: Interaction steps and corresponding KLM operators to complete Task 4 using
Sieuferd

exploration tools, ideally one of the tool developers.
The metrics are Capability, an effectiveness metric that measures if a

task can be completed or not using an evaluated tool, Operator Count, an
efficiency metric counting how many KLM Operators are required to com-
plete the task, and Time, another efficiency metric that translates the KLM
Operators required to complete the task into an approximate amount of time
using the experimentally derived timings for these operators. The operators
and timings are: K for each keystroke or button press amounting 0.2 seconds,
P for pointing to a target with the mouse corresponding to 1.1 seconds and
H for homing the hands on the keyboard or other devices, 0.4 seconds.

Finally, there is a combined effectiveness/efficiency fourth metric, Task
Efficiency, computed as the ration of Capability to Time. This metric pro-
vides an overall measure of how good a tool is in terms of the amount of “goals
per minute” it potentially allows its users to complete and favours more ver-
satile tools with a higher Capability while penalizes those very specialized in
just a small set of tasks though they have a smaller Time metric.

23

CTask4 OCTask4 TTask4 TETask4

Rhizomer 0% - - 0

Virtuoso
Facets

0% - - 0

Sieuferd 100%
95

(62K, 32P, 1H)
48.0 1.2

PepeSearch 0% - - 0

Table 9: BESDUI metrics for Task 4 (best results in bold)

C OC T TE

Rhizomer 58%
29

(15.6K, 10.9P, 2.6H)
16.1 2.2

Virtuoso
Facets

54%
36.1

(20.4K, 12.7P, 3H)
19.3 1.7

Sieuferd 96%
71.3

(48.7K, 19.8P, 2.9H)
32.6 1.8

PepeSearch 25%
21

(10.3K, 5.3P, 5.3H)
10.1 1.5

Table 10: BESDUI metrics values for the whole benchmark, i.e. the 12 tasks (best results
in bold)

Based on the 12 proposed tasks and the 4 metrics, the benchmark has
been applied to four structured data exploration tools. This has been done
without having to recruit test users, experienced users capable of using the
tool have been enough, usually involving the tool developers. The experts
recorded the interaction steps and then translated them to KLM Operators,
from which all the metrics were computed.

Three of the analyzed tools are based on semantic data (Rhizomer, Vir-
tuoso and PepeSearch) and one on relational (Sieuferd). The full results are
available from a GitHub repository12 intended for maintaining the bench-
mark, keeping track of evaluations and organizing contributions. In addition
to showing benchmark applicability, this experience has provided interesting
insights that can be derived from the overall results for the metrics presented
in Table 10, which highlights in bold the best results for each metric.

First of all, Sieuferd is the most effective tool, capable of performing all

12http://w3id.org/BESDUI

24

http://w3id.org/BESDUI

tasks except for Tasks 12 that is completed just in part. However, quite logi-
cally, this power comes with a more sophisticated user interface that provides
the lowest efficiency: more than 70 operators and 30 seconds on average to
complete these tasks. On the other hand, PepeSearch allows completing just
3 tasks due to its much simpler user interface, though its simplicity makes it
very efficient, requiring 21 operators and just 10 seconds on average to com-
plete these tasks. Rhizomer and Virtuoso lay on the middle, support slightly
more than half of the tasks while showing more efficiency than Sieuferd and
less than PepeSearch. Finally, there is Task Efficiency that allows getting
a more balanced score between effectiveness and efficiency. Thus, Rhizomer
gets the best mark because it provides almost 60% Capability with half
the time when compared to Sieufred, which amount to a Task Efficiency of
2.2 goals per minute. This last metric tries to balance effectiveness versus
efficiency but penalizing tools that are too specialized in just some tasks.
Thus, Sieuferd, though not very efficient, gets the second-best Task Effi-
ciency followed by Virtuoso, while PepeSearch gets the worst score due to its
overspecialization.

6. Future Work

The main objective of this contribution is to foster the formation of a
community around the evaluation and comparison of tools for structured data
exploration. Consequently, we have prepared a GitHub repository where all
the required elements to conduct an evaluation are available. This includes
a sample dataset, the descriptions of the tasks, reference SPARQL and SQL
queries to test expected responses, descriptions of the metrics and templates
to report results.

We have added contributing instructions based on the common practice
in GitHub that encourages forking the repository, making contributions like
new evaluation results based on the templates and then making a pull request
to incorporate them in the reference repository. We also expect contributions
like additional tasks or metrics, which will also be considered for inclusion.

In addition to this expected community-building efforts and results, our
plans also include concrete tools to be evaluated, metrics and tasks to con-
sider. First of all, we are currently exploring the tasks also proposed in the
BSBM in the Business Intelligence scenario. Though these tasks are much
more complicated than the Explore tasks, some of them might be interesting
to test with tools featuring visualizations.

25

We also plan to test more tools using the benchmark, ranging from se-
mantic data tools providing direct manipulation like Explorator, to tools
that facilitate building queries interactively like YASGUI or relational data
exploration tools like Cipher.

Our performance metrics currently emphasize basic low-level operations
such as keystrokes and mouse clicks. These can be refined. For example,
Fitts’s law has related the time to execute a mouse operation to the target
regions size and from it is the mouse starting point; this can be incorporated
into our timing analysis. At a higher level, our benchmark currently does not
capture user effort. An interface that requires the user to think hard about
which operation to perform next (and how to do it) will be more taxing and
take more time.

As discussed previously, and extreme model of this is the SPARQL com-
mand line, which is extremely efficient in the KLM because all the work is
mental, figuring out what SPARQL query to time. Similarly, our bench-
mark favours complicated UI layouts where all actions are ”one click away”,
neglecting the fact that Fitts’ Law indicates that selecting these actions be-
comes slower. The KLM model does not capture this, but there are so-called
GOMS [24] models that try to.

To fully evaluate the usefulness of the proposed efficiency metrics, we will
also test the systems using user experience evaluation techniques that involve
real users and include measuring the actual time users need to complete the
tasks.

References

[1] R. Cyganiak, A. Jentzsch, The linking open data cloud diagram, 2014.
URL: http://lod-cloud.net.

[2] R. V. Guha, D. Brickley, S. Macbeth, Schema.org: Evolution of struc-
tured data on the web, Communications of the ACM 59 (2016) 44–51.
doi:10.1145/2844544.

[3] H. Alani, Y. Kalfoglou, K. OHara, N. Shadbolt, Towards a Killer App
for the Semantic Web, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2005, p. 829843. doi:10.1007/11574620.

[4] N. Shadbolt, W. Hall, T. Berners-Lee, The semantic web revisited,
Intelligent Systems 21 (2006) 96–101. doi:10.1109/MIS.2006.62.

26

http://lod-cloud.net
http://dx.doi.org/10.1145/2844544
http://dx.doi.org/10.1007/11574620
http://dx.doi.org/10.1109/MIS.2006.62

[5] S. Krug, Dont Make Me Think, Revisited: A Common Sense Approach
to Web Usability, 3rd edition ed., New Riders, 2014.

[6] V. Tamma, Semantic web support for intelligent search and retrieval of
business knowledge, IEEE Intelligent Systems 25 (2010) 84–88. doi:10.
1109/MIS.2010.25.

[7] A. Freitas, E. Curry, J. G. Oliveira, S. ORiain, Querying heterogeneous
datasets on the linked data web: Challenges, approaches, and trends,
IEEE Internet Computing 16 (2012) 24–33. doi:10.1109/MIC.2011.141.

[8] A.-S. Dadzie, M. Rowe, Approaches to visualising linked data: A survey,
Semantic Web 2 (2011) 89–124. doi:10.3233/SW-2011-0037.

[9] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Pru d’ommeaux,
m. c. schraefel, Tabulator redux: Browsing and writing linked data,
in: Proceedings of the Linked Data on the Web Workshop (LDOW08),
volume 369, CEUR Workshop Proceedings, 2008, pp. 1–8.

[10] E. Kaufmann, A. Bernstein, Evaluating the usability of natural language
query languages and interfaces to semantic web knowledge bases, Web
Semantics: Science, Services and Agents on the World Wide Web 8
(2010) 377–393. doi:10.1016/j.websem.2010.06.001.

[11] J. M. Brunetti, R. Garćıa, S. Auer, From overview to facets and pivoting
for interactive exploration of semantic web data, International Journal
on Semantic Web and Information Systems 9 (2013) 1–20. doi:10.4018/
jswis.2013010101.

[12] R. Usbeck, M. Röder, M. Hoffmann, F. Conrads, J. Huthmann, A.-
C. Ngonga-Ngomo, C. Demmler, C. Unger, Benchmarking question
answering systems, Semantic Web 10 (2019) 293–304. doi:10.3233/
SW-180312.

[13] S. E. Sim, S. Easterbrook, R. C. Holt, Using benchmarking to advance
research: A challenge to software engineering, in: Proceedings of the
25th International Conference on Software Engineering, ICSE 03, IEEE
Computer Society, 2003, pp. 74–83.

27

http://dx.doi.org/10.1109/MIS.2010.25
http://dx.doi.org/10.1109/MIS.2010.25
http://dx.doi.org/10.1109/MIC.2011.141
http://dx.doi.org/10.3233/SW-2011-0037
http://dx.doi.org/10.1016/j.websem.2010.06.001
http://dx.doi.org/10.4018/jswis.2013010101
http://dx.doi.org/10.4018/jswis.2013010101
http://dx.doi.org/10.3233/SW-180312
http://dx.doi.org/10.3233/SW-180312

[14] E. M. Voorhees, D. K. Harman, TREC: Experiment and Evaluation in
Information Retrieval (Digital Libraries and Electronic Publishing), The
MIT Press, 2005.

[15] J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, C. Trojahn, On-
tology Alignment Evaluation Initiative: Six Years of Experience, Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp.
158–192. doi:10.1007/978-3-642-22630-4_6.

[16] P. Shvaiko, J. Euzenat, E. Jimnez-Ruiz, M. Cheatham, O. Hassanzadeh,
Proceedings of the 13th International Workshop on Ontology Match-
ing, CEUR Workshop Proceedings, CEUR Workshop Proceedings, 2018.
URL: http://ceur-ws.org/Vol-2288/.

[17] C. Bizer, A. Schultz, The berlin sparql benchmark, International Journal
on Semantic Web and Information Systems (IJSWIS) 5 (2009) 1–24.
doi:10.4018/jswis.2009040101.

[18] T. Catarci, M. F. Costabile, S. Levialdi, C. Batini, Visual query systems
for databases: A survey, Journal of Visual Languages & Computing 8
(1997) 215–260. doi:10.1006/jvlc.1997.0037.

[19] R. Garćıa, R. Gil, J. M. Gimeno, E. Bakke, D. R. Karger, Besdui: A
benchmark for end-user structured data user interfaces, in: The Se-
mantic Web ISWC 2016, Lecture Notes in Computer Science, Springer,
Cham, 2016, pp. 65–79. doi:10.1007/978-3-319-46547-0.

[20] S. K. Card, T. P. Moran, A. Newell, The keystroke-level model for user
performance time with interactive systems, Commun. ACM 23 (1980)
396–410. doi:10.1145/358886.358895.

[21] O. Erling, I. Mikhailov, RDF Support in the Virtuoso DBMS, volume
221 of Studies in Computational Intelligence, Springer Berlin Heidelberg,
2009, pp. 7–24. doi:10.1007/978-3-642-02184-8_2.

[22] G. Vega-Gorgojo, M. Giese, S. Heggestyl, A. Soylu, A. Waaler, Pepe-
search: Semantic data for the masses, PLOS ONE 11 (2016). doi:10.
1371/journal.pone.0151573.

[23] E. Bakke, D. R. Karger, Expressive query construction through direct
manipulation of nested relational results, in: Proceedings of the 2016

28

http://dx.doi.org/10.1007/978-3-642-22630-4_6
http://ceur-ws.org/Vol-2288/
http://dx.doi.org/10.4018/jswis.2009040101
http://dx.doi.org/10.1006/jvlc.1997.0037
http://dx.doi.org/10.1007/978-3-319-46547-0
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1007/978-3-642-02184-8_2
http://dx.doi.org/10.1371/journal.pone.0151573
http://dx.doi.org/10.1371/journal.pone.0151573

International Conference on Management of Data, SIGMOD 16, ACM,
2016, pp. 1377–1392. doi:10.1145/2882903.2915210.

[24] B. E. John, D. E. Kieras, The goms family of user interface analy-
sis techniques: Comparison and contrast, ACM Trans. Comput.-Hum.
Interact. 3 (1996) 320–351. doi:10.1145/235833.236054.

29

http://dx.doi.org/10.1145/2882903.2915210
http://dx.doi.org/10.1145/235833.236054

	Introduction
	Approach
	Structured Data Exploration Benchmark
	End-User Tasks
	Metrics

	Benchmark Evaluation
	Overall Results

	Conclusions
	Future Work

